
nDTIC

ELECTE

APR16 1990
ZOF~ S BD

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

I Vr 1 -.MO Wright-Patterson Air Force Base, Ohio
I I III gd n

Ap tvv ,frum -Ibf. " 197,wt~ ,u,,um.o,.,,ea fte 04 ,-113



AFIT/GOR/ENS/90M-15

COMPARISON OF BATCH MEANS AND
INDEPENDENT REPLICATIONS TECHNIQUES TO

APPLICATIONS OF THE KALMAN FILTER
FOR SIMULATION OUTPUT ANALYSIS

THESIS

Charles H. Porter
Captain, USAF

AFIT/GOR/ENS/90M-15

Approved for public release; distribution unlimitedDTIC
S ELECTE

APR16 19901

B



AFIT/GOR/ENS/90M-15

COMPARISON OF BATCH MEANS AND INDEPENDENT REPLICATIONS

TECHNIQUES TO APPLICATIONS OF THE KALMAN FILTER

FOR SIMULATION OUTPUT ANALYSIS

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Operations Research

Acoesslon For

NTIS GRA&I

DTIC TAB E
Charles H. Porter, B.A. Unannounced f

Justifioation
Captain, USAF

By
Distribution/
Availability Codes

March 1990 ode
Avail and/or

Diat S Speoial

Approved for public release; distribution unlimited



Preface

The purpose of this research was to develop software

which automated the current simulation output analysis

techniques of batch means and independent replications, and

to determine the applicability of employing Kalman filtering

for simulation output analysis on an M/M/1 queue. Both of

these objectives were met, with several areas identified for

follow-on research.

During the course of this thesis, many people have gone

out of their way to help me. I would like to thank Major

Kenneth Bauer, Dr. James Chrissis, and, especially, Dr.

Peter Maybeck for being on my committee. Major Bauer's

insight along with Dr. Maybeck's knowledge of the Kalman

filter, and patience made many areas of investigation

possible.

I would also like to thank Mr. Stan Musick, the

designer of the Multimode Simulation for Optimal Filter

Evaluation (MSOFE) program, and Captain Britt Snodgrass for

their help in employing MSOFE. I would also like to take

this opportunity to express my thankfulness to Captain Mark

Gallagher for the insights and many hours of help he

provided.

Finally, I wish to thank my wife, Carla, and my
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Abstract

The purpose of this c was twofold. First, to

develop software which automated the current simulation

output analysis techniques of batch means and independent

replications. Second, to determine the applicability of

employing Kalman filtering for simulation output analysis on

an M/M/1 queue.

The Output Analysis Program incorporates batch means

and independent replications into a menu driven, micro-

computer'program. The program allows the user to quickly

analyze the simulation output graphically, discard the

transient, and then perform the two techniques.

The Kalman Filter proved valuable in providing insight

into the underlying system variance in steady state, and

appeared to offer several avenues for further research,

particularly in the area of transient identification. y
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COMPARISON OF BATCH MEANS AND INDEPENDENT REPLICATIONS

TECHNIQUES TO APPLICATIONS OF THE KALMAN FILTER

FOR SIMULATION OUTPUT ANALYSIS

I. Introduction

Aircraft scheduling and the repair of line replaceable

units represent just two areas from a vast array of Air

Force production processes. One problem that managers of

these processes face is deciding which, if any, of the many

options available, will increase their efficiency.

Computer simulation is a technique which allows

managers to evaluate the benefits of several alternative

courses of action quickly. In a discrete event simulation,

the system to be studied is modelled as a series of events

which occur at discrete points in time (22:381). The

performance of the simulation model is then assumed

representative of the actual system through its warm up

period and into what is known as steady state.

Steady state is one of the two system states defined by

Pritsker in, Introduction to Simulation and SLAM II. It has

been reached when the system is oscillating about some fixed

mean value. The second state is known as transient. It

precedes steady state and reflects the system's "warm-up"

period (22:44). Data from this state is typically removed
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before most output analysis techniques are employed.

The process used to discard the transient data is called, by

Pritsker, "Data Truncation" and the following quote, from

his book, highlights some of its limitations.

The intent is to reduce the initial condition bias in
the estimates by eliminating values recorded during
the transient period of the simulation. However, by
discarding a portion of the data, we are not using
observations and, hence, may be increasing the
estimated variance of the mean . . . The truncation
point is selected as the time at which the response
'appears' to have reached steady state. (22:44)

Problems arise in deciding the point at which the

system transitions from transient to near steady state, the

number of simulation runs required to attain a certain

degree of accuracy in the predictions, and the required

length of these runs, which would ensure some representation

of steady state had been achieved. There are numerous

methods available (22:752-757), but each requires the

analyst to make subjective decisions. It is this

subjectivity that makes it possible for each of a number of

different modelers to calculate their own best estimate

steady state, given the same set of observation data.

There are also two main types of simulations: steady

state and terminating (22:733). This research will deal

with the first, where the system is assumed to have run long

enough to obtain an asymptotic distribution of the target

variate. In the latter, the simulation is run until a

2



certain event occurs or for a pre-specified length of time.

For each simulation, the number of runs required and

the run length are both determined arbitrarily by the

modeler. There are heuristic algorithms to aid in the

determination of the number of runs required for a certain

accuracy. These are based on the results of a number of

.pilot runs." These values are influenced, though, by the

modeler's identification and truncation of the transient.

The simulation must also be allowed to run long enough to

capture the extent of the transient period. For this

reason, initial runs are typically much longer than

necessary, and thus add to the cost of the study.

Purpose

The purpose of this thesis was twofold. The first

objective was to develop a computer program which automated

the batch means and independent replications techniques for

simulation output analysis. The second was to determine if

Kalman filtering offered any efficiencies in determining

steady state characteristics of a class of queueing

simulation models.

The queueing models to be evaluated will exhibit

Markovian characteristics in their arrival and service

rates, and will have a single activity with one server,

referred to as an M/M/I queue (24:239). The term Markovian

indicates that "the conditional probability of the future
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X(t+s) given the present X(s) and the past X(u), Ou<s,

depends only on the present and is independent of the past"

(24:234). The arrival rate represents the average number of

entities which enter the system over a specified period. In

the case of this research the arrival rate is 10

entities/hr. The service rate represents the average number

of entities that a particular service activity within the

system can perform service on during the same time interval.

For the purpose of this thesis, there is a single service

activity with a mean service time of 15 entities/hr.

Arrival and service rates in the M/M/1 queue are identical

to birth and death rates described by Ross (24:236-237).

Kalman filtering (13:35; 16:4) will be compared to the

techniques of batch means and independent replications in

estimating the steady state mean and standard deviation of

this estimate, as reflected by 95% confidence intervals.

In order to present the purpose of this research

better, some further definition is required for the terms

batch means, independent replications, Kalman filtering,

time series models. and queueing simulation models.

Batch Means. The batch means procedure uses one long

simulation run's output data to estimate the mean and of the

system, and this estimate's variance. The output data is

sectioned into sequential non-overlapping "batches" and then

tested for independence between the successive batches. The
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technique is described in detail by Welch (27:307), while

the necessary details and equations are set forward in

Chapter II.

Independent Replications. This procedure also computes

estimates of the mean and its variance, but requires

multiple runs to be accomplished. The mean of each run is

computed and, using equations derived by Welch (27:296), the

mean and its variance are computed.

Kalman Filtering. Kalman filtering (7:193; 13:35;

16:4) is a technique from the area of control theory which

has among its uses the prediction of space vehicle

trajectory and real time updating of inertial navigation

systems. Miller and Leskiw's book, An Introduction to

Kalman Filtering with Applications, provides the following

explanation.

The basic idea behind Kalman filtering is to combine
the system model (the differential equation governing
the flight path of the vehicle) and the measurement
model (the observations made on vehicle position) in an
optimum fashion in order to obtain the best estimate of
the position of the vehicle at any time t, >t *
(20:v).

Time Series Models. Time series models (1:80) predict

an object's position at future discrete moments in time.

They are based on a culmination of previous observations,

and predict based on this history. The number of previous

observations used directly in the computation of the next
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position depends upon the order of the equation used. A

second order model implies that the last two observed

positions, and errors from their associated predictions,

are combined to form the next step prediction. Chapter II

addresses the foundations of the Auto Regressive - Moving

Average (ARMA) model, and its application to Kalman filter

generation.

Queueinq Simulation Models. Queueing simulation models

(22:382) are those models which evaluate a system which

operates on the principle that some entities that pass

through the system will have to wait in a line (queue)

before they can receive some particular service. These

models are used to assess the efficiency of the system in

processing entities by measuring such attributes as system

production, time spent in the system, and utilization rates

of the specific serving functions.

Sub-objectives

In determining the effectiveness of Kalman filtering in

identifying the estimate of the mean and its associated

standard deviation for a system in steady state, several

sub-objectives had to be accomplished. First, a computer

simulation model of the M/M/1 queue had to be developed.

The M/M/1 queue was selected for its well known

characteristics (24:306-313) and the mathematical

tractability of its steady state equations. The model was

6



constructed using the SLAM II simulation language

(22:62), with FORTRAN inserts. The output of interest from

the model is the average time spent in the system for each

entity.

In order to assess multiple outputs of the simulation

model quickly, a micro-computer output analysis program had

to be developed. This program, written in Turbo Pascal '"

(2:23), employs the batch means and independent replications

techniques. The program drastically reduces the computation

time, allowing the user to evaluate the effects of choosing

different transient termination points quickly and easily.

The Kalman filter requires that observations be equally

spaced with regard to time. This is impossible to do within

a simulation with Markovian arrival/service rates.

Therefoye, a linear interpolation of the data was

accomplished, using both system clock time and the entities'

time in the system.

Using the equally spaced data, Kalman filter matrices

were determined using the State Space Modeling option in the

forecasting package FORECAST MASTER '" (9:1). The matrices

generated were then placed into the software package

Multimode Simulation for Optimal Filter Evaluation MSOFE

(4:1), and used to determine the underlying mean and

standard deviation of the system.

7



Overview of Chapters

Subsequent chapters will cover the thesis development.

Chapter II provides the historical background and references

for the techniques to be employed. It also provides

derivations for the most commonly used and important

equations. Chapter III, the methodology, outlines the

development of the appropriate computer programs and models,

and their employment for output data generation.

Chapter IV provides the results of the three output

analysis techniques: batch means, independent replications,

and Kalman filtering. Quantitative comparisons are based on

the technique's ability to form the mean and a 95%

confidence interval based on the standard deviation.

Chapter V presents conclusions, founded on the results of

Chapter IV, and recommendations for follow on studies.

8



II. Historical Development

Background

This chapter reviews applicable output analysis

and Kalman filtering literature, and covers eight basic

topics: steady state vs. terminating simulations, moving

averages, confidence intervals, data truncation, cubic

spline and linear interpolation, batch means, independent

replications, and Kalman filtering.

The moving averages and data truncation techniques are

used to manipulate data for use in batch means and

independent replications. Moving averages "level out" the

spikes in the output data by averaging across observations

(27:29). Confidence intervals will be used to define a

range of plausible values for the true system mean, centered

on the estimated mean of the observations. The halfwidth of

the confidence interval will be based upon the variance of

the observations.

Data truncation refers to removing the transient or

"warm-up" period data from the simulation output, leaving

only steady state data (22:44). This is done to provide

stationary output to be evaluated.

Recent work by Kelton (14:355-366) indicates that there

could be some benefit in choosing appropriate initial system

conditions. This article suggests procedures for

identifying reasonable initialization parameters based on

9



the results of pilot runs. One of the expected benefits of

the adaptive Kalman filtering procedure, however, is that

once the filter has been fit, it will provide an accurate

next step ahead forecast and the variance of the forecast,

even with the transient data included. To this end, all

simulation runs will be started with "empty and idle"

conditions, but various truncation points were used when

applying the batch means and independent replications

techniques to evaluate the effect.

Independent replications and batch means represent two

basic methods for obtaining estimates of the steady state

mean and its associated variance (22:732). The main

difference is that the method of independent replications

requires multiple runs of the same simulation, whereas batch

means uses one very long run.

These techniques are used to evaluate the output of

computerized simulation models, which Welch describes in the

following way:

These models have a random input that consists of a

set of sequences of random variables whose

distributions are specified. . . Correspondingly,
the models have a random output that consists of a

set of sequences of random variables . . . whose

distributions are unknown. The reason for

constructing and running the simulation is to

estimate certain characteristics of these output

distributions. The model is simulated because these

characteristics cannot be computed from analytic

results. (27:268-269)

10



It was the purpose of this thesis to construct a

computer software program which automated the batch means

and independent replications procedures and to determine

whether Kalman filtering techniques could be employed

effectively in assessing the underlying characteristics of

the system being modelled.

Steady State vs. Terminating Simulations

The differences in these two types of simulation models

are as follows:

Terminating Simulations - Simulation ends

when a prespecified event or condition occurs

or a certain amount of time elapses.

Steady State - Assumes a situation that can

be thought of as being able to run long

enough that an asymptotic distribution of the

target variate is (for practical purposes)
realized.

This thesis dealt with the case of steady state

simulations, which have reached an asymptotic approximation

of true steady state behavior. It is important to note that

true steady state is impossible to achieve in a process

defined on a finite time interval.

Moving Averages

This technique can be used to remove large fluctuations

from the graphical portrayal of the output data. Performing

a moving average (27:293-294) provides a new "averaged"

value (j,,) for each of the N original data points. These

11



values are then plotted, and reviewed to determine trends in

the true system mean, W. This aids the experimenter by

making it easier to interpret the data to determine the

extent of the transient period (27:293), for M runs of the

simulation. Welch addresses the technique in the following

way:

• . .sometimes these judgments about the long term
trends in (p.} are easier to make if an explicit
attempt is made to smooth out the short term (high
frequency) fluctuations in {J,}. The simplest way
to do this is to take a moving average over an
interval long enough to remove short term
fluctuations but not so long as to distort the long
term trend. (27:293-294)

A moving average of length 2K + 1 is defined as

K
j(n;K) = (2K + 1 ) ' E p ,o if n >= K + 1

k=-K

n-1
(2n - 1)' E p if n < K + 1 (1)

k=-(n-1)

The next two figures present a graphical comparison of

the two techniques. Figure 1 depicts a representative

computer simulation output with customer time in system

represented on the Y-axis and the number of the entity on

the X-axis. Figure 2 shows the data from Figure 1, but with

moving average values from a window with a K value of 5.

12
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Figure 1. Representative Simulation Model Output Data
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Figure 2. Moving Averaged Simulation Output.
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Confidence Intervals

Confidence intervals are used when it isn't possible to

arrive at an exact answer. The intervals are centered at

the best estimate attainable, and then a "halfwidth" value

is subtracted and added to form the interval. The halfwidth

is determined by three factors: the number of observations

to be used, the significance level (usually denoted by a),

and the standard deviation of the estimate (6:266-268). See

Equation (6) below for the actual computation (6:268).

Equation (6) provides a halfwidth which will

statistically cover the mean (1-a)% of the time. This is

because the t value is derived from the fact that the

population from which the mean was estimated is assumed to

have a normal distribution. In most cases the true variance

of the system is unknown and so the standard deviation (o)

is approximated by the standard deviation of the estimates

(s).

In general, when estimating confidence intervals, the

equations below are used. In keeping with Welch's notation

the number of runs is represented by "M", the number of

observations per run by "N,", and the n*h observation of the

m th run by Vo. (27:290).

14



V n 1,...,N,
In

V n 1,...,N,
2n

V n 1 ,...,N, (2)

Mn

Then the mean of the mth run can be computed as:

N

= V = 1/M E V , m = 1,...,M, (3)
n=1 mn

Using the mean values for each run, the variance and

standard deviation can be determined using the following

equations (27:294).

N
Var. = s.' = 1/(M-1) Z (V. - 2 (4)

n=1

Std Dev n = s. = (var.)" (5)

These values are then combined with the t critical

value to determine the boundaries of the confidence interval

using the equation below, where (1 - a) represents the

confidence coefficient and (n - 1) indicates the degrees of

freedom for the t value (6:268).

Hal fwidth = x ± t * s/Jn (6)

Data Truncation

This technique eliminates the transient period data

within a run. In this application, the cutoff value is

determined by the experimenter, based on a graphical

15



display, as shown above in Figure 1.

Once the cutoff value, no , is established, all

observations previous to this point (i rom 1 to n, ) are

deleted across the M runs. This leaves the data which

represents the system's performance in steady state

(27:289).

As mentioned previously, Pritsker highlights some

limitations with this technique. "The truncation point is

selected as the time at which the response 'appears' to

have reached steady state" (22:44).

This arbitrary selection can lead to various problems

as noted by Kleijnen:

Practitioners often throw away the [initial] part of

the time series; that is, they "warm-up" the

simulation before they start recording observations.

Unfortunately, two practical problems remain.

1. How can we determine whether the transient phase

is over 9

2. Throwing away the initial phase of each run

wastes computer time.

Practitioners often construct graphs (and making
graphs is always an excellent idea in any statistical

experiment) to see whether start-up effects have
"obviously" disappeared. . If we overestimate the

length of the transient phase, we throw away
information on the steady state and increase the
variance of the final estimator. If we do not wish

to waste computer time, we may be tempted to
underestimate the initial phase and we bias the final
estimator. (15:65)

16



Cubic Spline and Linear Interpolation

The simulation output data provided by the SLAM II

model is unequally spaced in time. This is caused by the

exponential nature of the arrival and service rates. In

order to employ the adaptive Kalman filtering program

FORECAST MASTER, however, the input data is assumed to be at

regular time intervals.

Two methods were identified to transform the output

data into these regular intervals. The first, cubic spline

interpolation, fits a continuous function through the data

points. This function passes through each of the data

points and is continuously differentiablP. Burden and

Faires (3:118) provide the following explanation:

A general cubic polynomial ibvolves four

constants; so there is sufficient flexibility in
the cubic spline procedure to ensure not only that
the interpolant is continuously differentiable on

the interval, but also that it has a continuous

second derivative on the interval. The

construction of the cubic spline does not,
however, assume that the derivatives of the

interpolant agree with those of the function, even

at the nodes.

Burden and Faires also provide a derivation of the

equations used to form the cubic spline (3:118-120), along

with several computer algorithms for different applications.

The program MATRIX, T" (12:4-34) was used to obtain the cubic

spline for the unequally spaced output data.

The second method used was that of piecewise linear

17



interpolation. This procedure connects adjacent data values

by straight lines, and then computes equally spaced

observations. In this experiment a regular time interval of

10 minutes was used. Appendix D contains a copy of the

program used to obtain the linear data and some sample

output. Data points were interpolated for the first 1000

data points in each of the 50 output data files.

Independent Replications

Also called "replications," this technique deals with

multiple runs of the same simulation, assuming independence

between the runs. The method of replications calculates an

estimate of the mean and its corresponding variance

(22:732).

After the transient data has been removed from each of

the M runs, the remaining values all have approximately the

same mean, which can be computed with the following

equations (27:296).

In the method of independent replications,
independent sample means are generated from
independent simulation runs. A point estimate and a
confidence interval are generated from these sample
means as we shall now describe . . .

On each replication we form the sample mean

N
A. 1/ (N-n 9 ) E Va. (7)

nn 0 + 1

• . . approximately unbiased estimator of p is

18



M
4 = l/M E , (8)

m=1

Moreover, if we let

M M
s2 (1:) = 1/CM-i) E (4o - )2 = 1/(M-I) E 42

m= I m=1

- M/(M-I) 42 (9)

we obtain the confidence interval and
statement

Prob{4 - t,, (1-a/2)(s(.)/M"
12 <

4 + t,, (1-cx/2)s(.)/M"2) = 1-c (10)

According to Pritsker the technique has the following

advantages and disadvantages.

The replication procedure has the desirable property
that samples are independent. Another advantage is
that it can be used for both terminating and steady
state analysis where a terminating analysis is one
that is performed for a specific finite time period.
The disadvantages associated with replications are:
1) each replication contains a startup segment which
may not be representative of stationary behavior; and

2) only one sample, X1 ,is obtained from each
replication which could mean that extensive
information about the variable of interest is not
being gleaned from the data. (22:733)

Batch Means

This technique deals with the case of using only one

long run of output data. According to Welch it "exactly

parallels the method of independent replications except that

19



the sequences are adjacent, non-overlapping subsequences of

the output of a single simulation run" (27:307).

The most important part is to determine the batch size,

m, necessary to indicate independence among the batches

(8:511). Once this independence is identified, the batches

can be compared as if they were separate runs (5:303).

Chen and Seila state the ". . . batch means method

depends . . . upon establishing a batch size that is large

enough that all batches are approximately uncorrelated"

(5:302). A method which tests this autocorrelation between

the batches was developed by Fishman, and uses a test

statistic Ck (8:514). When the autocorrelation effect is

larger than the C. statistic, it indicates that

independence between the batches is reasonable.

Fishman's work uses the symbol Y to represent

individual observations. To keep with the notation used

earlier in the text, the following equations will have the

constant V in place of Y. Within the equation, k is the

total number of batches, and m is the number of observations

per batch (8:514):

k-1 k
C. = 1 - E (VILs - VI o )2/2 E (VI.° - p)' (11)

i=1 i=1

The algorithm starts by setting the number of batches

20



equal to the number of observations. It then determines

values for the test statistic. If the values indicate

independence, then the testing stops and a mean and

confidence interval are computed. If the values do not pass

the test, then the number of batches is divided by two

(k/2), resulting in a doubled batch size. The

autocorrelation and test statistic are then compared, and

the process continues until the values pass the independence

test or the number of batches becomes less than eight

(8:515). In explaining why at least eight batches are

required, Fishman references Von Neumann's work, stating a

comparison at the .05 significance level for C. with k >= 8

"indicates negligible error" (8:514).

Chen and Seila identify the following equations for

computing the mean for the data from the independent

batches. The constant "i" represents the number of the

batch, while k is the number of batches (5:302).

The i1 h batch mean, then is

k
= 1/k E X(1_I)k. j  (12)

j=1

the point estimator for p is the sample

mean of the batch means

m
= 1/m E X, (13)

1=1
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The standard deviation of the estimator and its

confidence interval can be calculated with Eqs. (9) and (10)

above by substituting m for M.

Pritsker refers to this technique as "subintervals" and

highlights the following advantages and disadvantages.

The advantages of using subintervals to estimate the
variance of the sample mean are that a single run can
be used to obtain an estimate and only one transient
period is included in the output (or required to be
deleted). The disadvantage of the procedure is in
establishing the batch size, b, which makes the
subintervals independent. (22:735)

Kalman filtering

Kalman filtering is described by Maybeck (16:4) as an

"optimal recursive data processing algorithm." In his

text, Stochastic Models Estimation, and Control, he

describes the Kalman filter's underlying assumptions (16:7).

A Kalman filter performs this conditional
probability density propagation for problems
in which the system can be described through
a linear model in which system and
measurement noises are white and Gaussian (to
be explained shortly). Under these
conditions, the mean, mode, median, and
virtually any reasonable choice for an
"optimal" estimate all coincide, so there is
in fact a unique "best" estimate of the value
of x.

According to Maybeck,"whiteness implies that the noise value
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is not correlated in time," and being Gaussian implies that,

"at any single point in time, the probability density of a

Gaussian noise amplitude takes on the shape of a normal bell

shaped curve." One of the greatest strengths of the Kalman

filter is its versatility once these three assumptions are

made. It can be implemented over a wide spectrum of

applications from many fields.

Recent work by the U.S. Army at Fort Monmouth, New

Jersey (26:9-32), applied Kalman filtering to estimating

"clocks." This study indicated the benefit of Kalman

filtering, comparing it to standard auto regressive

integrated moving average (ARIMA) models.

Static Case. In an article entitled Understanding the

Kalman Filter Meinhold and Singpurwalla highlight the fact

that most of the documentation in this area has been done by

the engineering and scientific community. Therefore, the

notation and methodology are typically difficult to relate

with common statistical formulae (19:123). They have taken

the basic concepts of the Kalman filter and, using Bayesian

formulation and multivariate statistics, have provided a

statistical derivation of this important process in

statistical terms.

Meinhold and Singpurwalla provide a clear path to

follow. They develop the concept of the Kalman filter as

the combination of system and observation equations.
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The following quote identifies the components of the

system/observation equations and their significance:

Let Y. , Ytz ,.- Y, , the data (which may be

either scalar or vectors), denote the observed

values of a variable of interest at times t,

t-l,..., 1. We assume that Y. depends on an

unobservable quantity e, , known as the state of
nature. Our aim is to make inferences about e,
which may be either a scalar or a vector and whose

dimension is independent of the dimension of Yt.
The relationship between Y, and e, is linear and

is specified by the observation equation

Yt = Ft et + vt (14)

where F. is a known quantity. The observation

error v is assumed to be normally distributed
with mean zero and a known variance V, , denoted

as v. N (0, V,).

The essential difference between the [Kalman

filter] and the conventional linear model
representation is that in the former, the state of

nature - analogous to the regression coefficients

of the latter - is not assumed to be a constant

but may change with time. This dynamic feature is

incorporated via the system equation, wherein

et = Gt(et-j + w. (15)

G, being a known quantity, and the system equation

error w, ' N (0, W, ), with W, known...

In addition to the usual linear model

assumptions regarding the error terms, we also

postulate that v, is independent of w,.

To provide an example, Meinhold and Singpurwalla
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present the tracking of a satellite's orbit (19:124). This

provides some insight as to the physical relationships

within the equations.

The unknown state of nature e. could be the
position and speed of the satellite at time t,
with respect to a spherical coordinate system with
origin at the center of the earth. These
quantities can not be measured directly. Instead,
from tracking stations around the earth, we may
obtain measurements of distance to the satellite
and the accompanying angles of measurement; these
are the Y. 's. The principles of geometry, mapping
Y1 into e, , would be incorporated in F, , while
v, would reflect the measurement error; G, would
prescribe how the position and speed change in
time according to physical laws governing orbiting
bodies, while w, would allow for deviations from
these laws owing to such factors as nonuniformity
of the earths gravitational field, and so on.

The key to the Kalman filtering algorithm lies in its

"recursive" nature. Future predictions are based only on

the last state and its corresponding, cumulative covariance

kernel, a matrix containing the covariance estimates for the

states of the process. The process is completely defined by

its first two moments, due to the underlying assumption that

the process can be represented by a linear system driven by

white, Gaussian (normal) noise.

The main intent of Meinhold and Singpurwalla's article

is to derive inferences about 0, , given the input values Y,

using Bayesian statistics. The following will overview the

derivation of the Kalman filtering equations, while

expanding on some of the actual calculations.
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The derivation through the direct application of Bayes

theorem:

Prob(State of NaturelData) o( Prob(DatalState of Nature)
x Prob(State of Nature)

or

P(e'1Y,) a P(Yle,,Y_) x P(eY,.1 ) (16)

where

Yt-I = (Y,-I, Y,- 2 , , Y')

As noted by Meinhold and Singpurwalla, the left side of

the equation represents the posterior distribution for e at

time t, while the terms on the right hand side represent the

likelihood and prior distributions respectively.

At this point, knowledge of the value of e,_-, can be

stated in a probability statement, where e is the best

estimate of the system state at the last time, and E is the

associated covariance kernel of this estimate:

(e,_ 1 Y,.) N(e,., ,_) (17)

The recursive estimation begins at time 0, with initial

estimations e0 and E,. The process then looks forward to

system performance a time t in the future. This is done in

two increments: the first is a propagation of the initial

estimates, the second an update based on the actual
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observat ion.

In the propagation phase of the estimation, the best

choice for the value of e, is given by the system equation

Gtel_: + w,. Based on the well known statistical

relat ionship:

X Z N(p,Z) => CX Z N(Cp,CEC') (16)

the mean and variance of 8, can be seen to be

(e Y,-,) . N(G,8t_ 1,R t=G jt.,G,'+Wt) (19)

which represents the prior distribution.

Upon making the observation at time t, the posterior

probabilities must no . be computed. This requires the

estimation of the likelihood L(eY,), or equivalently

P(YtI8e ,Yt- 1 )- This estimation follows, where e, represents

the error in predicting Y, from the point t-1, also known

as the residual:

e, = Y, - Y, = Y, - F, GO,_. (20)

As F,, G, , and ,.-, are all known, knowing Y, is
equivalent to knowing e,. With this information, the
probability statement is now rewritten:

P(e, IY,,v,. ) = P(e, Ie,,Y,_ , ) a P(e, I,,Y,_ , ) x P(e, IY,()
(21)
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with P(e, 1e, ,Y,-) being the likelihood.

Now, incorporating the observation to replace Y% in

the equation for e, above, the result is show to be

e, = F,(e, - G'e, _) + vf (22)

making the value of E(e Je O YY-) = F,(e, - Gfe _1).

As the distribution of v% has been assumed to be

N(O,V, ), it can be seen that the likelihood can be

described as follows:

(e, Ie, ,Y,-,) - N(F,(e, - G,e.) ,V,) (23)

.ayes' theorem now results in

P(e, Ie,,Y,_,) x P(e, IY- 1 ) (24)

S P (e,, e, I Y-,-)det

This is the best estimator of e. at time t. Once this

value is computed, the process is repeated for a point, time

t in the future.

Meinhold and Singpurwalla note (19:125) that the effort

to determine P(etIYt) above could be reduced by using well

known results from multivariate statistics.

Let X, and X. have a bivariate normal distribution
with means p, and p,, respectively, and a

covariance matrix

We denote this by ] (25)
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(X (J,) [:z E "] (26)

When [26) holds, the conditional distribution of
X, given X, is described by

(X ,X2  =x 2 ) Z N(p , + E 12 E2 2- 1 (x 1 -P 2 ),EIE -E 12E 2 2'E7)
(27)

The quantity p, + E12E2 2
" (x 2 - P2) is called the

repression function, and E1 E 22
- is referred to as

the coefficient of the least squares regression of
X, on x ...

For our situation, we suppress the conditioning
variables Y,-, and let X, correspond to e,, and X2
correspond to e, ; we denote this correspondence
by X, <=> e1 and X, <=> e,. Since

(etY,_) N(G,et;, ,R,) (see(19))

we note that

P2 <=> GA-G

and

E2. <=> R,

If in (26) we replace X, , Xz, p=, and E., by et,
etp, Gt0-.,, and R. , respectively and recall the
result that

(eIe,,Yt-,i) - N(F (et-Ge,.-) ,V). (28)

With (28) and the fact that

e, -% N(Gtet_&,Rt )

the expected value for (27) can be computed as

E(XIXz=X2 ) = p, + £12 E22 (x 2 - PZ) (29)

where, substituting in for X, , X, p , and £,
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E e e, , -1  ) = Yt- + 12 R, "' (6, -G, e,-1). (30)

Comparing this to (28) results in

PI + Eta R,-l (e, - G,e,_,) = F,(9, - G,8,.-), (31)

which implies that p, = 0, and £t = F, R,.

With this information, the variance of this function is

computed as follows, where R, is symmetric:

Var(e, e, ,Y,-1) = £, - £12 E22 "  £21 (32)

= £1l - Ft R, Rt"l Rt F,'

= l - Ft R. F.'

From (28), this variance equals V,, therefore

V E- F, R. Ft' (33)

or, equivalently

Ell= V% + F, R, F,' (34)

Substituting these results into (26) gives

Ie, IYt-l N GI ekI RF /t RFt' y

e. YI y0 F Rt V, + F, R, Fl

Now substitute into

(et e, ,Y,-) % N(p, +£12 E22
-
1 (xa- P2),

Ell - E1 2 £22" £2 ) (35)

and derive the following expressions for mean, E,, and
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variance, Et.

e, = E(e,e) = Ge,-, + R, F,' V, + F, R, F,') - e, (36)

Z, = Var(eIe) = R, - R, F,' (V, + F, R, F,' I ) F t R, (37)

where R, Ft,' (V, + F, R, F' )I represents the Kalman filter
gain, K.

Now that the values for 0, and E, have been derived,

all that is required is to specify a system's G and F

matrices and the initial values for e0 and E,. The program

FORECAST MASTER has the same type of Kalman filtering

approach, but uses the "innovations form" of the Kalman

filter (9:7-6), as shown on page 34.

Adaptive Filtering. Adaptive Kalman filtering falls

typically into one of two styles. The first incorporates a

bank of Kalman filters which are each built for a particular

type of system performance, such as steady state, a

transient value, or a step change. Harrison and Stevens

(10:343-344) apply this strategy in short term forecasting,

using a Bayesian approach.

The filters' outputs are then fed into a controller

which evaluates the residual values from each filter. The

controller then selects the best filter based on the lowest

residual magnitude, relative to the filter-computed residual

covariance CVI + F, R, F,'. This process is repeated at each
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covariance EVI + F1 RO Ft'. This process is repeated at each

input value, allowing the system to react instantly to state

changes in the data.

The second style, and the one used in this thesis,

depends upon a single Kalman gain matrix, generated by

maximum likelihood estimations. The process to be used

stems from the work of Mehra (18:175-184), and uses maximum

likelihood methods to reduce the residual values to the

level of white noise. This was done by fitting the ARMA

model which had the residual values most in consonance with

the filter-computed covariance CV, + F, R, F,'], and then

representing this model in state space form.

ARMA models combine the aspects of two different types

of times series models, autoregressive and moving average,

to obtain the most parsimonious representation of the

system. The autoregressive (AR) model is based on the

findings of Yule and Wold, as referenced by Abraham and

Ledolter. The process is based on the observation that

"every weakly stationary nondeterministic stochastic process

(z, - p) can be written as a linear combination (or linear

filter) of a sequence of uncorrelated random variables."

(1:197) The order of the model determines the number of

terms required. For the AR model, the order is typically

denoted by the letter "p." Equation (38) shows the general

equation for an AR(p) process:

32



z, = §1 z,. + . . , z,.P + a, (38)

where the value a, represents the random shock at time t,

from "a sequence of uncorrelated random variables from a

fixed distribution with mean E(a,) = 0, and variance V(a,) =

U2." (1:197) The values of the f, expressions represent the

coefficients associated with the previous p observations.

The moving average (MA) model is based on using the

previous "random shock" values, a,, in conjunction with

their appropriate weighting coefficients. These

coefficients, are usually denoted as e,, but, to avoid

confusion with those of the steady state Kalman filter, the

variable T, will be used instead. Equation (39) represents

the general MA (q) model, where "q" denotes the model's

order (1:217):

Z - a% - , a,-, -T, .q (39)

Although either of these techniques can be used to

model a system, the most parsimonious representation is

usually a combination of the two, in the form of the ARMA

model, where a "backshift operator is employed. This

operator, "B," denotes stepping backward through time. In

general Bz, = z,-,, and B' z, = z,.. The general ARMA (p,q)

model is shown below in equation 40 (1:222).
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(1 - B - ... - B')(z, - I) =

(I - T1 B - q B ) at (40)

Once the optimal ARMA model has been derived, it is

placed into a state space form. For details on this

procedure see Harvey (11:101-104), Shea (25:92), or Abraham

and Ledolter (1:359-360). Abraham and Ledolter use S, to

represent the system states, for which e, will be

substituted to keep with previous notation. Looking at

their general case for an ARMA (p,q) model (1:360), where

[G] is an identity matrix and there is no measurement noise:

y= + ... + Ey.p + a, - Ta,-,- Ta, (41)

the state model is given by

y= [1 0 0 0 ... O)e,

I I ,2 - ,, -T

+*

1',, 0 ... L e,,-' . (42)

The program FORECAST MASTER then used these values to

form the appropriate Kalman filter matrices for computation,

using the Goodrich-Larimore algorithm (9:7-8), a variation

of the Akaike-Mehra algorithm, to identify the best values

of state transition G,, Kalman gain K, and measurement

(forecast) matrix F, of Eqs. (36) and (37). The format used
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by FORECAST MASTER, however, was the algebraically

equivalent "innovations form" of the Kalman filter (9:7-6).

This form is similar to the equations derived above, but

results in the following equations:

e, = G, e,., + EGKlv,

Y, = Fet  + S,vt

where

Sv, = Yt - Fe, =r

1/2

St = [V, + FR,F,]

v, = S,"  Y - F e, ]

-1

[GK], = G, R, F,' (S,')

resulting in the equations:

0, = G,et-, + EG,K],S, r,

and

Y, = F,G, + r,
Summary

There are several techniques currently available to

evaluate the mean and variance of simulation output. The

benefits of these procedures include their mathematical

tractability and their easy application of classical

statistics. Drawbacks include the confusion on the length

35



of the transient, and coverage rate of the system mean given

bias.
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III. Methodology

Overview

This chapter will cover the development of the methods

used for this thesis. In generating the computer software

package which automated the output analysis techniques of

batch means and independent replications, the intent was to

provide the analyst with a quick, easy-to-use analytic tool.

This program was then employed to evaluate the possible

benefits of Kalman filtering for performing the same tasks.

The measure of effectiveness was each technique's ability to

calculate the mean and confidence interval halfwidth, based

on the standard deviation. The impact of choosing the

cutoff value for the transient period was also addressed.

There are four main topic areas in this chapter: model

formulation, output analysis programming, the application of

Kalman filtering, and data formatting.

Model formulation

In order to compare the different techniques, an M/M/1

simulation queueing model was developed using SLAM II.

Figure 3 shows a flowchart of the M/M/1 queue, while the

SLAM II and FORTRAN insert programs are contained in

Appendix A.

Looking at the individual components in Figure 3, there

are four distinct system "nodes" and one service activity.
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The first node encountered is a create node, which generates

each of the entities which will pass through the system, at

a specified "arrival rate." In this research the arrival

rate has been selected to be exponential, averaging 10

entities per hour. This results in an entity being created,

on the average, every 6 minutes. The entity then proceeds

to an infinite capacity queue node, where it waits for the

service activity to be free. The waiting criteria for this

node is First-In-First-Out (FIFO). As the service activity,

located between the queue and event nodes, becomes free, the

next entity in the queue, if there is one, enters the

activity for service. Service activities can have single or

multiple "servers" which perform the service. In this

instance there is only one server, and so all entities must

pass through the activity one at a time. The "service rate"

for the server represents the average production over time.

In this case, the service rate is exponential with a mean

value of 15 entities/hr.

Upon completion of the activity, the entity enters the

event node. At this point, the FORTRAN subroutine is

accessed to build the file containing the actual system time

(TNOW) and the time the entity has spent in the system (TNOW

- Time of Creation). After this is accomplished the entity

is removed from the system by the terminate node.
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M/M/1 QUEUE
RHO m .667

activity

expon 8 Inf cap event 1 terminate

create queue

Figure 3. Flowchart of M/M/1 Queueing Simulation

The model was run 50 times, with four replications per

run, and 1000 entities per replication. The data structure

is shown in Figure 4, where the first column of 4000 values

represents system clock time. This column was only required

for the Kalman filtering technique, and is discussed below.

The second column provides the observations for the actual

time in system for each entity, and was used by all of the

techniques.

Output Analysis ProgramminQ

The SLAM II model output consisted of 400,000 data

values. As can be imagined, performing the batch means and

independent replications techniques manually on this
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400,000 DATA %LUES

MONEi.OUT MONE2.0UT MONES0.OUT

,.O. TIS

1000

1000

Figure 4. Configuration of SLAM II Output

quantity of data is untenable. The Output Analysis Program

was, therefore, developed to process the data quickly on a

micro-computer. The program was written in Turbo Pascal

(2:1), and is shown along with its corresponding user's

manual in Appendices B and C.

The program quickly averages the data, presenting it to

the analyst in a graphic display, from which to determine

the extent of the transient. Figure 5 is a wiring diagram

of the program, indicating the relationships between each of

the individual procedures.

Each of the procedures will now be discussed briefly.

The Data Menu allows the user to build a new data directory,

recall an existing directory, or list all directories made

previously that are available. Throughout the thesis, the
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YS AGFILE 1:MA

Figure 5. Flowchart of Output Analysis Program

term directory will be used to denote a string of SLAM II

output files sequentially listed. The data directories are

built by reading in a column of sequential output files of

uniform length. For example, in the case of the thesis,

four output files of length 1000 are read in. The user is

asked to provide a name for the directory. The program then

takes this name, adds a .DCT extension, and saves the file

to disk for future use. The recall option simply retrieves

one of these previously built directories, while the list

option provides the user a listing of .DCT files that

currently exist.

Once the data directory has been built or recalled, the

user is asked whether to evaluate multiple or single output
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files. If the multiple file option is selected, the program

averages each data point across all replications and plots

these averages on the screen. For instance, the first

observation of each of the four runs would be added together

to obtain a total, this total divided by 4 would then be

plotted at x = 1. This procedure was repeated 1000 times.

When the single file option was selected, the program

used the technique of moving averages to smooth out the

data. The equations and methodology for this technique are

covered in Chapter II. The user must specify the moving

average window's halfwidth. A plot of the averaged data is

then presented on the screen.

When the data from either option is plotted on the

screen, the user has the ability to scroll forwards or

backwards through the data, 600 points at a time. The user

then determines an estimate of where the transient period

ends, and enters this value. The program takes this in as

the variable CUTOFF. An example of the final screen display

is shown in Figure 6.

With the CUTOFF value identified, the program goes

through each of the output files in the directory and

truncates the first CUTOFF number of values. The user is

asked to name the new file containing only the steady state

data. The name specified is given a .SST extension by the

program and is saved to the disk.
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WOULD YU LIKE A PRINTOUT? (Y/):

Figure 6. Output Analysis Program Graph of Data

The user is given the option to perform batch means for

a single file, independent replications for multiple files,

or return to the original data menu. The batch means

procedure uses Fishman's technique (8:514), while the

independent replications procedure follows Welch's equations

(27:294-296), both of which are discussed in Chapter II.

The program then provides the mean, its associated variance,

and confidence interval data as shown in Figures 7 and 8.

The major advantage of this program is that it provides

the user the ability to assess multiple data files, and

instantly see the impact of selecting different cutoff

values. This makes sensitivity analysis very feasible, with

very little additional effort required.
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BATCH MEANS i

INDEP WITH 25 BATCHES

MEAN: 12.45
VARIANCE: 146.83

95% CONFIDENCE INTERVAL

-11.79 <= MEAN <= 36.68

II

Figure 7. Batch Means Output Analysis Data

INDEPENDENT REPLICATIONS

95% CONFIDENCE INT COMPUTED WITH T= 2.7

MEAN : 12.17
VARIANCE : 1.28

10.60 <= MEAN <= 13.74

ADDITIONAL RUNS REQ FOR +/- 5% INTERVAL = 1578

Figure 8. Independent Replications Output Analysis Data
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Application of Kalman filterinQ

The key to implementing Kalman filtering is to specify

the characteristics of the system which is to be modelled

correctly. To accomplish this, the software package

FORECAST MASTER (9:7-1 - 7-13), and in particular, the state

space modelling option, was employed. FORECAST MASTER uses

the Goodrich-Larimore algorithm (9:7-6) to fit the

appropriate ARMA model to the observed data.

This ARMA model was then converted into the appropriate

state space representation for Kalman filtering (9:7-8 - 7-

11; 11:101; 25:92). The user's manual addresses the

differences in their algorithm from the Akaike-Mehra

algorithm, referencing Mehra's work on the single adaptive

filter (18:175). The program provides the state transition

matrix G, the Kalman gain matrix [GK], and the measurement

(forecast) matrix F, of Eqs (36) and (37), referenced in

Chapter II.

In evaluating the Kalman filter performance, only the

first 1000 data values from each of the 50 files (see Figure

4) were used. These are exactly the same data values used

to estimate the mean with the batch means technique.

The one stipulation to use the adaptive Kalman filter

was that the data had to be equally spaced in time. It was,

therefore, interpolated. The two techniques attempted were

a cubic spline and linear interpolation between successive
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points. Both of these techniques are addressed in detail in

the data formatting section below.

Once the equally spaced data was obtained, the

appropriate state space model, and Kalman filter matrices

had to be computed. Because the filter's matrices will

become constant when the system has reached steady state,

observing the changes within the Kalman gain matrix provides

information on when steady state has been achieved. At this

point, FORECAST MASTER's data limitation of 2000

observations was encountered.

In order to evaluate the filter, data sets of 2000

observations were generated in several ways. The first data

set formed, consisted of the last 200 observations from the

first ten output files. The second set contained the last

100 observations of the first 20 files. The third set was

comprised of the last 50 observations of 40 files, while the

fourth set contained the last 40 observations of all 50

files. The computer program used to obtain these values is

shown in Appendix D. Each of these four data sets was then

evaluated by FORECAST MASTER, for autocorrelation and to

determine the G,, [GK], and F, matrices.

In deciding the appropriate order for the ARMA model,

and therefore, the Kalman filter, the data's autocorrelation

was assessed. Figure 9, suggests a second order Markov

process (1:206; 16:183), which indicates that the
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appropriate state space model for the data should have at

least two states. Evaluation of the Akaike Identification

Criteria (9:6-4) indicated that the second order model

provided the best "fit" of the data.

1 .0o

0.9[
0.8
0.7 .
0.6 ,
0.4
0.3
0.2
0.1

01

-0.1
-0.2
-0.3
-0.4
-0.5
-0.6
-0.7
-0.8

-0.9
-1.0

Figure 9. Autocorrelation Plot of Equally Spaced Output, I=10

In examining the Kalman filter matrices generated, the

values for the last two sets of data were effectively the

same. This indicated that the best possible model for the

data had been achieved. The resultant Kalman filter

matrices, obtained from FORECAST MASTER, are shown in Figure

10, in a sample output format from the program, where the

program's notation differs from Meinhold and Singpurwalla
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(19: 123) referenced in Chapter II. In the program output

the F matrix represents the transition matrix (G,), the K

matrix remains the Kalman gain matrix K (GK], and the H

matrix represents the measurement (forecast) matrix (F.).

Yariaoles and Transforms:

" =-0(Endo)

Transit ..n maItrL. F

Sa Iman cai n matri i

C',. ?1:8

0.6676

F:re.:ast matrix H

0., 0 , . 00,0 .'C

Figure 10. Kalman Filter Values from FORECAST MASTER

The state space modelling option also provided a screen with

statistical information on the data set used for the model

(9:7-4), shown in Figure 11. The information provided

gives insight into the basic characteristics of the data

which was modelled. The fist two lines indicate the average

autocorrelation between each of the residual values and

residuals which occurred a "lag" of 1 to 12 before. The

48



AUTOCORRELATIONS OF LAGGED RESIDUAL ERRORS

Lag: 1 2 3 4 5 6 7 8 9 10 ii 12

K50 .00 .01 -.00 .03 -. 00 .02 -.09 -.05 -.08 -. 04 -. 04 -.00
-.00 .01 .02 -. 01 -. 02 .01

Statistic Value Probability

Number of observations 1998
Mean value of K50 11.162600
Standard deviation of K50 10.331002
Standard error of forecast 6.435969
R-square (corrected for mean) 0.612484
F(4,1994) 787.897226 1.000000
Adjusted R-square 0.611706
LJung-Box Test = Chisq(14) 45.811991 0.999970

Durbin-Watson Statistic 1.996797 0.056935

Standardized AIC Statistic 0.623600
Standardized BIC Statistic 0.627105

Figure 11. State Space Modelling Statistics

best way to describe the concept of lag is with an example.

Residual 4 is "lag 1" from residual 5, while it is also "lag

3" from residual 7. The intent of reviewing these

autocorrelations is to ensure that after the data has been

modelled, that the residuals do reflect a "white noise"

process with little to no correlation. The table gives the

number of observations used was 1998, of 2000 available.

This was due to the fact that the second order model

required two previous values to make the next prediction, so

the first two data values could not have predictions. The

next two entries provide the mean of the data values

provided and the standard deviation of that mean. The

standard error of the forecast is particularly important,

representing the square root of the underlying system

variance (R,) shown in Equation (37) of Chapter II.
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The R-square, F value, and adjusted R-square all apply to

the adequacy of the Kalman filter in modelling the data,

where an R-square value of 1.0 indicates a perfect fit

(21:423). Both the Ljung-Box test and the Durbin-Watson

statistic indicate the "degree to which the error residuals

over the historical sample adhere to the hypothesis that

they are independently normally distributed, with zero mean"

(9:6-5). The Durbin-Watson test statistic is "the ratio of

the sum of squares of the first differences of the errors,

divided by the sum of squares of the errors" (9:6-5). As an

indication, the hypothesis is supported more as this value

approaches 2.0. The Ljung-Box test is similar but reviews

several lag's autocorrelation, rather than just the first

(9:6-6).

Data Formatting

The batch means and independent replications techniques

required only the entities' actual time in system, while

Kalman filtering required these values along with the time

between observations. This resulted in the output files,

generated by the SLAM II program, being operated upon at

least twice to get the necessary formats. The data files

generated, and the programs used, are shown in Figure 12,

and described below.
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SLAM 11
OUTPUT DATA

_______I _____

F MONE'.DAT

(LININT.PAS)J

___ I_ (________________
EQUAL*.DAT ]MM ON EO.DAT}

(TRUNCEO (OUTPT. PAS)

.PAS) [_______ __ __

FCM'.DAT MUHW' DAT ]BAT'.DAT
(CONFI LE2 (MEAN.PAS) I(MEAN. PAS)

PAS) _ __ _ _

(KIO.K20,K40,K5o IME AN/HW/COVER} MEAN/H W/COVER

(FORECAST
MASTER)[______

KFMATRICES

(MSOFE)

IKLM4/1.DAT
(OUTPUT [(MEAN.

.PAS) [ PAS)

ME AN/H W

Figure 12. Flowchart of Data Formatting
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The entries within each of the blocks on the flowchart

indicate the file names given to the data files generated.

The entries within the parentheses () indicate the programs

used to develop each data file. Table 1 lists all of the

programs above and the purpose of their output files.

PROGRAM PURPOSE

LININT.PAS Geneyates a file of linearly interpolated data
at a specified sample rate from an existing

data file.

SPEED.PAS Produces a data file from the original SLAM II
output which contains only the time in system
values.

TRUNCEQ.PAS Truncates the transient portion of the data
from the data file.

CONFILE2.PAS Concatenates portions of the steady state data

files to form a file of 2000 values to be
evaluated by FORECAST MASTER.

FORECAST State space modelling option was incorporated
MASTER '" to generate the appropriate Kalman filter

matrices for the files generated with

CONFILE2.PAS (9:1).

MSOFE Generates the Kalman filter next step
predictions, based on the matrices from

FORECAST MASTER and the equally spaced data
from LININT.PAS (4:1).

OUTPUT.PAS The Output Analysis Program generates the
mean and its associated variance of the
original and Kalman filter predicted time in

system values.

MEAN.PAS Calculates the grand mean and its associated
variance for the means of the Kalman filter
predictions, with cutoff values from 0 to 25%

at 5% increments.

Table 1. Programs Used and Their Purposes
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Evaluating the data files for the Kalman filtering

approach demonstrated that the cubic spline interpolation,

from the software package MATRIX, (12:4-34), was not

feasible due to the data's high variability. The cubic

spline criteria to pass through every data point with a

continuous function (3:118) caused the interpolation to

greatly exaggerate the data. Where the original data varied

from approximately 1/1000 to 64 minutes, the interpolated

data ranged from -2700 to 6700 minutes. At this point, the

linear interpolation method was employed. Its values were

restricted to the range of the actual data, as the

interpolated values were drawn from a line connecting

original, sequential data points. A plot of an original

data set and a partial plot of the fitted cubic spline are

shown in Figures 13 and 14.
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Figure 13. Plot of Initial Output Data
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Figure 14. Partial Cubic Spline Interpolation of Output

The linear interpolation program CLININT.PAS)

provided interpolated values at each tenth time unit. This

program built the files to be evaluated, in turn, by the

FORECAST MASTER program. Figure 15 is a plot of the

linearly interpolated data from the data shown in Figure 14.
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TIME

Figure 15. Plot of Linearly Interpolated Data
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When the mean values for the equally spaced data were

compared to the batch means for the corresponding original

output data, they were consistently lower. This is due to

the dynamics of the queueing system. The requirement for

equally spaced data automatically biases the linearly

interpolated values low. When the queue is full, leading to

higher times in system, then the entities exit at an

exponential rate of 15/hr, the service rate. When the queue

is empty, the time between observations is higher, while the

total time in system for the entity decreases. This

resulted in the lower time in system entities having a

larger distance, on a time axis, between them. This, in

turn, meant that as the time between samples decreased, the

percentage of time that these lower time in system values

were measured increased. As is shown in Chapter IV, this

caused the mean to be biased lower as the interpolated

sampling rate increased.

Summary

Now that the data formats and techniques have been

discussed, the three techniques must be compared. Chapter

IV presents the results of each technique. Comparisons were

accomplished for cutoff values of 0 to 25% of the data,

based on the calculation of the system's steady state mean,

and its 95% confidence interval coverage rate of the

analytic and system average means. Chapter V presents
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conclusions and recommendations, along with identifying some

of the problems which needed to be resolved in the

implementation of the Kalman filter technique.
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IV. Results and Discussions

Output Analysis

This chapter presents the results of the batch means,

independent replications, and Kalman filtering techniques in

assessing the system's steady state mean and variance.

Comparisons are based upon computation of the grand mean,

the average size of the predicted 95% confidence interval

halfwidth, and the percentage of time the confidence

intervals for each run covered the grand and analytic means

for each cutoff value. The grand mean represents the

average of the means from each of the 50 data files, where

the analytic mean is the steady state mean computed below.

To predict the system's steady state mean analytically,

equations from Introduction to Probability Models by Ross

are used (24:306-314). The statistic of interest was the

time spent in the system by each individual entity,

represented by the letter W. To determine this value,

required the two variables which represent the system's

average arrival rate, X, and average service rate, p.

The arrival rate represents the average number of

entities which enter the system during a specific time

interval. The time between arrivals for this research was

drawn from an exponential distribution with a mean of 6,

resulting in an average arrival rate of 10 entities/hour.
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The service rate indicates the average amount of time that

the entity must spend within a particular service activity.

This value was drawn from an exponential distribution with a

mean value of 4, making the average service rate 15

entities/hour.

Given these definitions and the equations from Ross

(24:306-314), the average time eaLh entity spends in the

system can be determined with the following equations.

Arrival Rate X = 10/hy

Service Rate p = 15/hr

W 1/(p -X) (47)

W = 1/(5/hr) = .2 hr = 12 minutes

The analytic mean of 12 minutes was then used as a benchmark

for the output analysis techniques.

Batch Means. The simulation output files were sorted

to obtain only the first 1000 actual time in system (TIS)

observations, for each of the 50 data files. The SLAM II

output data format is shown again in Figure 16.

This data was loaded into the Output Analysis Program,

which graphed the moving average with a window width of 10,

as shown in Figure 17. This graph was then evaluated to

determine the extent of the transient.
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Figure 16. Configuration of SLAM II Output
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Figure 17. Graph of Moving Averaged Output Data



Upon evaluating the above figure, it is unclear as to

where exactly the transient period ends. Because of this,

various cutoff values were tried. The batch means

algorithm, developed by Welch (27:307) and described in

Chapter II, was used for each cutoff value to obtain the

values listed in Table 2.

The grand mean and average halfwidth represent the

average of the 50-run's mean and halfwidth values for each

cutoff. Cutoff values on this table are by number of

observations, while coverage rates indicate the percentage

of the 50 confidence intervals for each cutoff which covered

the corresponding grand mean and analytic mean of 12.

GRAND AVG (MEAN) (12) AVG BATCH
CUTOFF MEAN(S.D.) HALFWIDTH % COVER % COVER SIZE

0 12.63(1.3) 2.47 88 98 28.67

50 12.55(1.4) 3.05 90 96 28.48

100 12.10(1.3) 2.91 94 94 28.80

150 12.18(1.4) 3.23 94 96 29.12

200 11.21(1.1) 2.55 100 84 22.08

250 11.35(1.1) 2.59 100 92 21.44

Table 2. Batch Means Performance Results
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Reviewing the values contained in Table 2, several

interesting facts come to light. First, the coverage of the

grand mean increases as more data is truncated, while the

coverage of the analytic mean decreases. This indicates

that the process is still operating somewhere in the

transient phase of the simulation, with a bias high at the

beginning. Second, despite the loss of data, the last two

halfwidth values are the smallest. This can be attributed

to two reasons: decreasing variance as the system warms up,

and the reduced number of observations per batch allowing

for more batches, and thus a tighter interval.

Independent replications. The independent

replications technique requires two or more runs of

simulation output. In this research, the technique was

performed with four independent output files of 1000 data

values concatenated together (see Figure 16).

The Output Analysis Program evaluated these files using

the equations developed by Welch (27:282) as presented in

Chapter II. As in the case of batch means, the extent of

the transient period was not easily distinguished. This can

be seen in Figure 18. Again, multiple cutoff values,

ranging from 0 to 250, were tried. Overall average values

are shown, for each cutoff in Table 3.
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Figure 18. Graph of Averaged Replications Data

GRAND AVG (MEAN) (12)
CUTOFF MEAN(S.D.) HALFWIDTH % COVER % COVER

0 12.55(.93) 1.29 68 62

50 12.41(1.1) 2.47 72 76

100 12.28(.96) 1.68 84 86

150 12.08(.97) 1.50 80 78

200 11.46(.82) 1.35 78 66

250 11.16(.91) 1.15 70 56

Table 3. Independent Replications Results
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The results shown in Table 3 demonstrate the problems

which can be encountered if too much data is used when the

system is still in a transient state. The large amount of

data caused the confidence intervals to be drawn in too

tightly about the estimated means. Because the system was

still in the transient, these reduced confidence intervals

were centered at values below the true mean. This resulted

in the coverage rates, of both the grand and analytic means,

to be much lower than those for batch means, indicating that

data would have to be obtained further out in the run for

independent replications to be used effectively. A% a nute

of interest, if the true mean had been unknown, the interval

would have been thought to have contained the true mean 95%

of the time, based on the calculations presented in Equation

(10), and the average time in system would have been biased

low.

Figure 19 presents a graphical depiction of the mean

values obtained by both batch means and independent

replications, versus the analytic steady state mean of 12.

This figure indicates that the value of the estimated system

mean drops as the cutoff value is increased. This was

directly the opposite of the result expected, giving two

indications. First, the system was biased high early in the

transient, due to a large initial buildup in the queue at

the start of each simulation. Second, the values with
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Figure 19. Compayison of Estimated and Analytic Means

higher cutoffs had mean values lower than the analytic mean,

indicating the process was probably still operating in the

transient. These two facts must be kept in mind while

evaluating the three techniques.

Kalman Pilter. The original SLAM II output data was

linearly interpolated at intervals of 10 (I=10) and then

evaluated using FORECAST MASTER (9:7-8) to obtain the Kalman

filter data shown in Figure 20.

These matrices and the data were then run through the

computer program Multimode Simulation for Optimal Filter

Evaluation (MSOFE) (4:1). Forecasts generated were

evaluated by the batch means portion of the output analysis
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Figure 20. FORECAST KOSTER Output on the Kalman Filter, I=10

progran to obtain mean and 95% confidence level halfwidth

information for each cutoff value. Cutoff intervals were

scaled 5% of the observations, and performed from 0 to 25%

of the data to evaluate their effect. For a data set of

1000, 'his would be 50, for 500 it is 25, and, as will be

used later, for 1300 it is 65. Table 4 displays the grand

mean (standard deviation) and average 95% hal fwidth values,

by cut,)ff, for data interpolated at each tenth minute. To

calculate the mean and halfwidth values for the Kalman

filter predictions, the batch means portion of the Output

Analysis Program was employed. The coverage values reflect
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the percent of the confidence intervals which cover the

grand mean and the analytic mean of 12.

GRAND AVG (MEAN) (12) # PER
CUTOFF MEAN(S.D.) HALFWIDTH % COVER % COVER BATCH

0 11.23(1.2) 2.74 8 84 15.4

25 11.18(1.3) 2.96 92 80 16.5

50 10.87(1.2) 2.83 90 78 15.0

75 10.55(1.2) 2.80 90 69 13.9

100 10.42(1.0) 2.87 90 76 15.0

125 9.63(,99) 2.41 100 52 11.8

Table 4. Kalman Filter Performance Results

Again, as in batch means, the number of observations

required per batch drops as the cutoff value increases.

This explains the tightest confidence interval corresponding

to the largest cutoff, even though less total data was used.

The coverage rates of the grand mean were comparable to

those for the batch means results on the original data. The

coverage rates for the analytic mean, however, were much

lower. This was because the value for the Kalman filter

estimate of the mean was lower than those for either batch

means or independent replications.

Review of the equally spaced data showed that after

linear interpolation the overall data mean was lower than

originally. The reason appeared to be that the sampling
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rate, 6/hr, was so much smaller than the service rate of

15/hr. Normally, this would imply that the sampling rate

should be increased. This, however, assumes that samples

are taken directly from the process, and not interpolated

from existing data. The effect of increasing the sampling

rate was then investigated.

The SLAM II output was once more interpolated; this

time with a time between observations of 4 minutes. The

interpolated values were then evaluated by FORECAST MASTER

to obtain the Kalman filter data shown in Figure 21.

Variables and Transforms:

4 45,'" Enc.,: t

Transltl,:,n matrix F

4).C6 . 4566

Kalman gain ma ri " !

1. C'156 I

Fore,: ast matri, H

Figure 21. FORECAST MASTER Output on Kalman filter, 1=4
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GRAND AVG (MEAN) (12) # PER

CUTOFF MEAN(S.D.) HALFWIDTH % COVER % COVER BATCH

0 9.26(.87) 3.83 97 73 72.7

65 9.31(1.1) 4.15 97 73 85.6

130 8.51(.99) 3.82 100 58 75.4

195 8.45(1.0) 4.22 100 55 86.6

260 7.71(.98) 3.91 100 41 78.7

325 6.76(.80) 3.08 100 10 50.1

Table 5. Kalman Filter Results, I=4

Evaluating in the same manner as for the interval of 10

resulted in the data shown in Table 5, which shows the lower

means and coverage rates as a result of increasing the

sampling rate, using linear interpolation. The two major

impacts come from the reduction of the mean and the size of

the batches required to pass the independence test.

The decrease in the mean value is due to the equal

weighting of the interpolated values. The problem arose

because entities which had to wait in the queue exited the

system approximately every 4 minutes, matching the service

rate exactly. Those entities that didn't have to wait

exited, on the average, with a higher time between

observations and lower times in system. Because the time
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between observations for the lower "time in system" values

was higher, the equally spaced observations landed on the

lines connecting these lower points more often. Histograms

are shown, for one of the data sets, in all three formats:

the original SLAM II output, linearly interpolated for I=10,

anid linearly interpolated for I=4. These are shown in

Figures 22, 23, and 24 respectively, where the time axis

remains the same, but the frequency scale changes.
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Figure 22. Histogram of Original Output Distribution
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The histograms reflect the increased weighting of the

lower time in system observations with increased sampling.

Note that the frequency value of 150 on the original data

histogram represents 15% of the entire population, where for

the I=10 data it is 30%, and for the I=4 data it is

approximately 11.5%. This does not affect the

interpretation, however, of how the distribution is moving

to the left, indicating that the average of the observations

decreased as the sampling rate increased. Appendix E

contains a two dimensional array with the time between

observations vs. time in system.

Now that the decreasing mean has been explained, the

large difference in the batches required must be addressed.

The answer again lies in the time between observations.

When the interval was 10, the data was autocorrelated as a

typical second-order Markov process. (16:183; 1:206) This

autocorrelation is shown, in a plot from FORECAST MASTER, in

Figure 25.

When the time between interpolated points is reduced to

four, the bias of the higher time between observations

values comes into play once more. The lower time interval

causes the interpolated data to be highly autocorrelated,

masking much of the underlying system's mechanics. This

autocorrelation is shown in Figure 26.
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Figure 26. Autocorrelation of 1=4 Data
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Although no units are displayed, the autocorrelations in

Figure 25 are spaced at time intervals of 10 minutes, while

those in Figure 26 are every 4 minutes. A direct comparison

of the lag autocorrelations is, therefore, impossible.

With the sources of the bias identified, the means and

average delta between the original and interpolated means

were computed. These are shown in Tables 6 and 7, where the

cutoff values represent the percentage of the total

observations included in the cutoff. The number 0,

thereforE, reflects the cutoff value 0 for all methods while

5(%) indicates 50, 25, or 65, depending on the method.

CUTOFF Percentage

1 0 5 10 15 20 25

ORIG 12.63 12.55 12.10 12.18 11.21 11.35

10 11.23 11.18 10.87 10.55 10.42 9.63

4 9.26 9.31 8.51 8.45 7.71 6.76

Table 6. Comparison of Mean Values

1 0 5 10 15 20 25 AVG

10 1.40 1.32 1.23 1.63 0.79 1.72 1.35

4 3.37 3.24 3.59 3.73 3.50 4.59 3.67

Table 7. Differences between Mean Values
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The low coverage rates shown in Tables 4 and 5 are

influenced directly by the interpolation underestimating

the mean. The effect on the coverage rate of adding the

average bias, & = 1.35 for I=10 and & = 3.67 for 1=4, to the

estimated mean values is shown in Table 8.

Coverage Rates

(4) (4) (10) (10)
CUTOFF MEAN MEAN + & MEAN MEAN + &

0 73 100 84 94

5 73 100 80 94

10 58 100 78 94

15 55 100 69 90

20 41 100 76 90

25 10 87 52 82

Table 8. Coverage Rates with Delta Added In

The dramatic increase in percent coverage of the

analytic mean value of 12 indicates that the filter is

performing well, but is biased by the process by which the

data was obtained.

Calculation of System Variance. Currently, insight to

the underlying system variance is obtained through observing

the variance of the estimated mean and through the use of

pseudovalues, in a technique known as Jackknifing (15:227;

22:737). The Jackknifing technique effectively computes
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pseudovalues which represent calculations of the variance as

each one of the data values is individually removed from the

data file. The intent is to remove some of the sensitivity

of the standard variance calculations to departures from

normality, giving a better indication of the true system

performance. The Kalman filtering output from FORECAST

MASTER, however, allows for easy computation of the system

variance.

The computation is possible due to the assumptions that

the system has attained steady state, and that the

measurement values (time in system) are perfect, in that

they are explicitly known. Given these facts, the standard

error of the forecasts was taken from the output data shown

in Figure 20. This value represents the best estimate of

the system variance before the next observation is seen, R,.

It will be used along with the matrices from Figure 10 to

compute the true system variance at the time of measurement,

E, using Equation (42).

1 = (R) - K*F%*(R) (42)

where K has been substituted for R,F,' (VI + FtRtFV)-1, the

Kalman gain matrix. Because of the nature of the F. matrix,

[1,03, the value of E,,, the variance associated with the

next prediction, can be computed using Equation (43).
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l= (Rl) - KI*(1)*(R ) (43)

Ell = 3.66

This value represents the underlying true variance of

the system just after an observation is made, implying a

standard deviation of 1.91. This can not be compared to the

average standard deviations of the mean computed by batch

means on the Kalman filtered data. It represents, instead,

the true underlying variance of the system. This variance

fluctuates in a sawtooth pattern as shown in Figure 27

(16:223).
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Figure 27. Error Variance Time History
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The variance in Figure 27 begins at a specified level,

dropping straight down as the first observation is taken.

After the observation the variance increases asymptotically

toward the initial variance until the next observation is

taken. This process continues until some steady state is

achieved, where the top, R,, and the bottom, E,, of the

sawtooth become constant. These values now represent the

range over which the variance of the system can travel.

These values are useful for comparing the variance of one

system to another to assess the variability of the process.

In summary, each of the techniques provided some

insight into the M/M/1 queue which was modelled. The

independent replications' results were biased low by the

fact that the process was still within the transient, while

the Kalman filter experienced problems with the way in which

the data was interpolated. Recommendations to correct the

interpolation errors are addressed in Chapter V.
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V. Conclusions and Recommendations

Conclusions

The objectives set forth for this thesis were the

development of a computer program to automate the batch

means and independent replications simulation output

analysis techniques and the evaluation of possible benefits

of Kalman filtering in the same area. Both of these goals

were achieved, while several areas for future research were

identified.

The Output Analysis Program provides the analyst with

the ability to assess the system's steady state mean and its

associated variance from the simulation output. Designed

for implementation on Air Force standard micro-computers, it

allows the analyst to perform the following functions from

within one program.

1. Data averaging across replications

2. Moving averages within a single long run

3. Transient identification, from a graph of the data

4. Data truncation of the transient

5. Generation of a file for steady state data

6. Batch means evaluation of a single run

7. Independent replications evaluation for multiple

runs

With these capabilities, the analyst can also instantly

assess the impact of different cutoff values.
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The data used to evaluate the simulation output

included the system's warm-up from its initial state of

empty and idle. This was done purposely to reflect real

world conditions and assess the effects of the transient.

This approach also reduced the length of the SLAM II runs

required, keeping system costs lower.

In evaluating the output with the batch means and

independent replications techniques, it was apparent that

the latter's confidence intervals were too small to obtain

good coverage of the mean value. This was due to the higher

number of observations, which caused the confidence

interval's width to become too tight around the biased mean.

Batch means provided better coverage of both the grand

mean of the data and the analytic mean of 12, but these

rates dropped as the transient cutoff value increased. This

indicated that the system was still operating within some

portion of the transient, with an initial high bias caused

by the original filling of the queue.

Employing the Kalman filter resulted in a number of

interesting findings. The requirement for equally spaced

data, for the particular adaptation technique used to

generate the adaptive Kalman filter, led to the mean being

biased low. Elimination of the average bias produced 95%

confidence interval coverage rates, of the analytic mean,
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which were superior to both batch means and independent

repl icat ions.

The greatest benefit, however, comes in the

identification of the systems's true underlying variance.

Because of the nature of the Kalman filter, the variance of

the forecasts is a constant value once steady state has been

attained. Using this value, along with the Kalman gain and

state transition matrices, explained in Chapter II, the

system's variance can be computed. This is accomplished

with equations from the update cycle of the usual form or

the innovdtions form of the Kalman filter, as described in

Chapter II (18:176).

Another aspect of the Kalman filter which needs to be

addressed deals with its primary purpose. It provides an

excellent "step ahead" forecast for the next observation's

characteristics, and this capability is currently available

in software packages such as FORECAST MASTER.

Areas for Future Development

Several areas have come to light durirg the course of

this thesis which would be interesting to follow-on

research. They deal primarily with future research

possibilities for the Kalman filter, and mainframe

adaptation for the Output Analysis Program.

Harrison and Stevens (10:341-362) used Bayesian

estimation to compute the probability that each new
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observation is either from steady state, an outlier, a step

change, or a slope change. The process effectively used an

array of Kalman filters to compute these probabilities,

assuming the system variance was known in advance.

Extension of this theory, known as multiple model adaptive

estimation (17:129,131), however, utilizing a bank of

adaptive Kalman filters, could be directly applied to

identifying the end of the simulation transient period.

Once the system has reached steady state, to within a

specified probability, the covariance kernel can be computed

and estimation of the mean can be accomplished.

The requirement for equally spaced data caused many

bias problems in the interpolated data. Three approaches to

attempt removing this bias are presented. First, further

research could address the impact of using the original data

values directly from SLAM II, and what impact, if any, this

has on the estimate of the system's mean.

The second technique is an extension of the concept of

"moving average," presented in Chapter II (27:293). The

problem with the current interpolation technique is that the

interpolateu points sample more often across the lower time-

in-system, higher time-between-observation data points, and

each is considered a valid data point. The impact of these

points could be reduced by simply averaging the first five

actual data values on each side of the interpolated value.
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This parallels the moving average technique and should

result in a much more accurate representation of the data.

The third approach deals with the exponential

representation of the transition matrix, F, = eAat (23:68).

Given this relationship, identification of the underlying

matrix A would be represented as:

At = in (F) (48)

which Yepresents an infinite Taylor's series.

Once the A matrix is determined it will allow for non-fixed

sample rates of the data, equating directly to the St values

between the actual observations. Individual F matrices, F,,

could then be generated for each of the observations using

the equation:

(A&t,)
F, = e (49)

Another area which came to light was to use of the

Kalman predicted values, along with the original data, to

form a tighter confidence interval on the estimator of the

mean. In this way, the Kalman filter predictions would be

treated as a second, and independent, representation of the

system's steady state mean value.

Limitations were encountered in the upper bound of 2000

observations for FORECAST MASTER. Development of a program

which incorporates adaptive filtering techniques for larger
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files would be beneficial in determining filter values

across larger data sets.

Along the same lines, the Output Analysis Program has

certain file size limits, as it was designed for a micro-

computer. The program could be converted to Pascal and

placed on a mainframe computer, to alleviate these

limitations.
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Appendix A: SLAM II and FORTRAN Code for M/M/l Queue

SLAM II Code:-

GEN,CAPT PORTER,MMlQUEUE,1/2/69,5,,,,,,,72;
LIMITS, 2,3, 500;

NETWORK

CREATE,EXPON(6, 1),0, 1,1000;

QUEUE (1);
ACT(1)/l,EXPON(4,2);

EVENT, 1;

ENDNETWORK;

FORTRAN CODE:-

PROGRAM MAIN
DIENSIONJ NSET (10000)
COr1MO\/SCOMl/ATRIB(100) ,DD(100)fDDL100)DTNOW., II,r1FA,MSTOP,NCu'R

1, NCRDR, r\IF;JT,IfRLN, rNtSET,NTAPE,SS( 100), SSL(100), ThEXT, Th., XX (100)

COMO OSET (1 0000)
EQUIVALENCE(NSETC1) ,QSET( 1))
NNtSET= 10000
INCRDR=5

NTPE=7,

OPEN ( 10,f F ILE= fMOI'E. OUT'I , STATUS-- OLD')
CALL SLPM
STOP

C
SUBROUTINE EVENT(I)
COMMON/SCOM/ATRIB(100),DD(100),DDL(100)fDTNO4, II,r1FA,MSTCP,rNCLtK

1, NCRDR,NPR\JT, rRLJN, 1tSET, NTPPE, SS100), SSL (100) , TEXT, TNA, XX (100)

C COPUITE TIME BETW.EEN ARIVALS AND SEND TO FILE 10

30 (1) 1
1 XX(3)=TNOW.-ATRIB(1)

XX(2)=ThUOW-XX( 1)
L.PITE(10, 10) XX3),XXC2)
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10 FOR!%ATC12.7)

XX ci) =TNOLJ

ENJD
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Appendix B: output Analysis Program User's Guide

OUTPUT ANALYSIS PROGRAM

USER'S MANUAL

Developed by

Captain Charles H. Porter



OUTPUT ANALYSIS PROGRAM

Introduction:

The Output Analysis Program was developed to evaluate
the mean and variance for simulation outputs using the
techniques of independent replications and batch means. The
program was developed to operate on sequential output files
of uniform length, with one entry per line. Data must be in
an ASCII format. As a note, computation of 95% confidence
intervals uses a t-value rounded off to the nearest 1/10th.

There are four main topic areas within the program: the

Data Menu, the Graph, Batch Means, and Independent
Replications. This manual will address each individually,
along with operating instructions.

Output of any desired screen may be obtained by
pressing <SHIFT> Prt Scr, while a working printer is on
line.

Program Operation:

The Output Analysis Program is menu driven. Selection
of options on menus requires only the number of the
selection to be pressed, that is with no carriage return.
When the user is queried for file names and cutoff values a
carriage return is required to end the entry. File names
should be kept short, but have a maximum limit of 16
characters.

Init ial izat ion:

Data for the Output Analysis Program must be on the
same computer disk drive, and in the same computer directory
as the executing file, or have its appropriate
drive\directory identified. For instance, if the program is
on drive A: and the data is in the directory DATA, on drive
C:, in a file named OUTPUT.DAT, then when queried for the
file name the user must respond C:\DATA\OUTPUT.DAT. If the
data is in the same directory as the program it is necessary
only to type the filename and extension (OUTPUT.DAT). To
accomplish this either the executable file OUTPUT.EXE can be
copied onto the computer hard disk (if available) along with
the data to be used, or OUTPUT.EXE can be copied onto a
floppy diskette along with the data. As a note the .EXE
file requires less than 60K of disk space.
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To initialize the Output Analysis Program, place the

program diskette into a 5 1/4 inch floppy disk drive, log
into the appropriate drive and either copy the file

OUTPUT.EXE to the hard disk or to a floppy containing the
data file. Now, log into the appropriate drive and type
'GRAPHICS." This will enable the graphic displays within

the program to be printed. Then type "OUTPUT" . The
program's Data Menu will now appear on the screen. Pressing

the <shift> key and the Print Screen key together will now

pass whatever is displayed on the screen to the printer.

Data Menu:

The Data Menu provides the user with four options.

1) BUILD NEW DATA DIRECTORY
2) RECALL EXISTING DIRECTORY

3) LIST EXISTING DIRECTORIES

0) EXIT

1) BUILD NEW DATA DIRECTORY

This option allows the user to construct a new data

file from a simulation output file. Again, the data must be

in sequential files of equal length. The user is queried
for the name of the new directory to build, the number of
successive outputs files to be read in, the length of these

output files, and the name of the simulation output file.
The values are then read from the specified simulation file
into a file "FILENAME.dct". See below for example.

EXAMPLE 1. (Computer Queries are in BOLD)

SIM.OUT (Consists of two simulations outputs of five values
each, obtained from a program such as SLAM2)

1

2
3
4
5
2
3
4
4
6
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NAME OF NEW DIRECTORY: EXAMPLE

NO. OF FILES IN DIRECTORY: 2

NO. OF ENTRIES PER FILE: 5

NAME OF FILE: SIM.OUT

DIRECTORY EXAMPLE.DCT IS NOW BUILT

At this point the data has been loaded into a .DCT file
and can be evaluated by the graph options listed in the next
section.

If the user accidently input SUM.OUT for the name of
the simulation output data file (rather than SIM.OUT), the
program would return the appropriate error message that the
file did not exist. It then provides the user the choice of
reentering the file name or returning to the Data Menu.

2) RECALL EXISTING DIRECTORY

This option is used if the data file required was
loaded previously, and the name is known. The user will be
prompted for the directory name (NOTE: The .DCT extension is
assumed and not entered). The program will then provide the
user with the number of files and number of entries per file
for the directory which was recalled. The user then has the
option to choose one of the two graph options described in
the GRAPH section below, or to return to the Data Menu and
specify a different file for use.

If a file is requested which does not exist then the
program will return an error message indicating the file
could not be found. The user is then given the choice of
trying to load a file again or returning to the Data Menu.

3) LIST EXISTING DIRECTORIES:

Like the Recall option, this option allows the user to
retrieve data directories previously created. When
selected, however, it provides a list of all .DCT files
currently on disk. The user is then prompted to either
select one of these files for use or return to the main Data
Menu. If the user wants to load one of the listed files the
recall routine is automatically called and the commands are
the same.
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0) EXIT:

This selection terminates the Output Analysis Program
and returns the user to the DOS shell. All steady state
files (discussed in the Graph Section) and .DCT files
generated during the session are automatically saved.

GRAPH:

The Graph portion of the program incorporates a number
of data techniques and operations. When the Data portion of
the program terminates, either when building a new directory
or recalling an old one, the user will have the following
two options.

1) IDENTIFY TRANSIENT, MULTIPLE FILES

2) IDENTIFY TRANSIENT, SINGLE FILE

The selection criteria are self explanatory. If the
user is evaluating multiple runs, planning to use the
Independent Replications option, then option 1 is selected.
If, on the other hand, he/she is working with one long run,
for Batch Means, then option 2 is selected.

1) IDENTIFY TRANSIENT, MULTIPLE FILES:

In option 1, the multiple runs are averaged across the
individual observation numbers. For instance, the first
value of file one is averaged with the first value of file
2, and file 3, etc. These average values are then displayed
on the computers screen, along with a scale. The user must
then interpret, from the display, the point at which the
transient period ends. The user is allowed to scroll
through all of the input data by typing a "1" to back-up one
screen, and a "2" to go forward one. When the user has
determined the extent of the transient he/she types the
number 3 and is queried to enter the appropriate transient
"cutoff" value, and answer yes or no (Y/N) to having a copy
of the current graph screen printed..

2) IDENTIFY TRANSIENT, SINGLE FILE:

In option 2, the data is "smoothed" by running a moving
average across the data. Reference Peter D. Welch's work in
the Computer Perfomance ModellinQ Handbook (27:293). This
is accomplished by averaging values within a "window" whose
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width is specified by the user at the prompt "SIZE OF MOVAVG
WINDOW ?", and plotting this average as the value at the
center of the window. This window moves to the right, one
observation at a time, until there isn't enough data to fill
the window. This smoothed data is then graphed on the
screen, and the user has the same options as noted above to
scroll through the data. After the "Cutoff" value is input,
and the user has answered whether he/she would like a print
out, the cutoff number is used to develop a file of steady
state values.

STEADY STATE FILE GENERATION:

Once the transient "cutoff" value has be attained, the
program edits the current .DCT file and truncates the first
"cutoff" number of entries from each of the files. The user
is asked for the name of the new Steady State File, to which
the program adds a .SST extension. This file will be the
one used to compute the mean and variance for the system
while in steady state.

When the .SST file has been created, the program will
ask the user to select either the Batch Means or Independent
Replications techniques. Selection is based on the number
of files within the .SST file.

BATCH MEANS:

The Batch Means portion of the program evaluates one
long run of the simulation. The data within the .SST file
is partitioned into larger and larger batches until
independence, between the batches, is obtained. The
algorithm used was developed by Fishman (8:510-511). When
the test for independence passes, the number of batches
required for independence, the estimated mean and variance,
and the 95% confidence interval (assuming a t-value of 1.96)
are displayed on the screen.

If independence is not obtained before the number of
batches decreases to less than eight (8), then the message
"TEST FOR INDEPENDENCE FAILED, NEED MORE DATA", will Pppear
on the screen. Typing a carriage return will now re4turn the
user to the initial Data Menu, from which he/she ca:i
accomplish further runs or exit.
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Independent Replications:

The Independent Replications procedure also uses the
truncated .SST data file. The difference is, of course,
that there are multiple simulation outputs in the .SST file
used by the Independent Replications procedure.

The procedure automatically calculates the 95%
confidence interval for the data, using the algorithms noted
by Welch in the Computer Performance ModellinQ Handbook
(27:280). The mean, variance, confidence interval, and
number of additional runs required to be within +/- 5% of
the computed mean are displayed on the screen for the user's
information. The additional runs required are computed with
the formula identified by Welch, for Pilot Experimentation
(27:320).
After the data are displayed, typing carriage return will
return the user to the initial data menu, to accomplish
further runs or to exit.

92



Appendix C: Output Analysis Program

($M 65520,0,65519) (Sets Heap Size to Maximum Allowable)
PROGRA SIMALYSIS;

(This program contains the graphic lead in slide for the Output
Analysis Program and a call to the unit PROC, which contains the
procedures necessary to do the calculations. No actual computations
or data activities take place within the main program)

USES CRT,DOS,PROC,(GRPH; (SPECIFY THE UNITS THE PROGRAM WILL USE)

PROCEDURE LEADIN;
(This procedure simply produces the introductory screen for the
Output Analysis Program)

VOR

GD,GM,ERRCODE :INTEGER;

BEGIN
READLN; (GRAPHICS LEAD IN SLIDE GENERATION)
GD:=DETECT; (FROM EXAMPLE IN TURBO PASCAL REF. GUIDE)
INITGRAPH(GD, GM, ,,);

ERRCODE: =GRAHRESLLT;
IF ERRCODE = GROK THEN
BEGIN

SETTEXTSTYLE (TRIPLEXFONT, HORIZDIR, 5);
SETBKCOLOR (BLUE) ;
TEXTCOLOR (YELLOW);
OLUJTEXTXY(35,100, 'OTPUT ANALYSIS PROGRAM');
SETTEXTSTYLE(DEFAULTFONT, HORIZDIR, 1);
OUTTEXTXY(400,240, 'Developed by');
OUTTEXTXY(30,310,'Press <RETURN> to begin');
SETTEXTSTYLE(TRIPLEXFONT,I-HRIZDIR, 1);
OUTTEXTXY(400,260,'Capt Charles H. Porter');
READLN;

END

ELSE (IN CASE OF GRAPHICS ERROR}
WRITELN('RAHHICS ERROR ; ', HERRORSG (ERCODE));

CLOSEGRA°H;
TEXTMODE(C80);

END;
(* MIN MENU *)
BEGIN

CLRSCR;
LEADIN; (DISPLAYS LEAD IN GHICS FROM ABME}
DATA(TEMP,NUMFILE,NUMENT); (INITIAL CALL TO UNIT PROC)
CLRSCR;
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UNIT PROC;

(THIS UNIT IS COMPRISED OF AL THE PROCEDURES NECESSARY TO PERFORM THE
ATPUT ANLYSIS TECHNIQUES OF BATCH MEANS AD INDEPENDENT REPLICATIONS.

IT IS ACCESSED BY THE PROGRAM SIMAYSIS TO PETRT1 THESE FUNCTIONS)

INTERFACE
USES CRT, DOS, GRH, GiPAH3;

TYPE ARA = ARAY 0..2000] OF REAL;
WRI = STRING[20];

FYLE= TEXT;

VAR TEMP, TEMP,MAVG :ARA; (GLOBAL VARIABLE DECLARATION)
NUJMENTNUMFILE :INTEGER;
PAUSE :CHAR;
F IUNAME, DCTNAME : WRI ;

FIL : FYLE;
ORDER, CUTOFF,NLM :INTEGER;

PROCEDURE PRTSC; (PROCEDJRE DECLARATION IN THE INTERFACE SECTION)
PROCEDLRE BOXES;
PROCEDURE STSTATE;
PROCEDURE BATCH;
PROCEDUR SST;
PROCEDURE GRAH IT;
PROCEDURE AVERAGE;
PROCEDURE MrVAVG;
PROCEDURE NEWDATA;
PROCEDLRE VIEW;
PROCEDURE DATA (TEMP: ARA;VAR NUFILE,NUMENT: INTEGER);

IMPLEMENTATION
(THIS PORTION OF THE UNIT DOES THE ACTUAL OPERATIONS ON THE
PROCEDURES/FUNCTIONS IDENTIFIED IN THE INTERFACE SECTION)
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FUNCTION EXIST(FILEAME:STRING) :;OOLE;
(This function identifies whether a file actually exists.
It is used called just before a file is to be accessed.
If the file does not exist the user is given the opportunity
to try again, or back up. If this function were not included
then the program would abort whenever an action was attempted
on a non-existent file)

VAR

FIL :FILE;
BEGIN

ASSIGN(FIL,FILENAE) ;
($I-)
RESET (FIL);

($I+)
EXIST := (IOPESLLT = 0);

END;

PROCEDURE PRTSC;
(THIS PROCEDURE PRINTS DATA CURRENTLY DISPLAYED ON SCREEN. IT IS
ACCESSED BY THE GRAPHIT PROCEDLRE TO GET A "HARD COPY" OF THE
ACTUAL DATA PLOT)

VAR REG:REGISTERS;
BEGIN
INTR($5, Dos. Registers (REG))
END;

PROCEDURE BOXES;
(This procedure draws boxes on the screen, within which
the selection rules are placed, in menu format.)

TYPE
bar = string[79];

var
lyne bar;
Ll, vl,ur, 11,1 r,l i,ri,mi:char;
X: INTEGER;

begin
TEXTCOLOR(WHITE);
UR: =CHR(187);
LR: H(188);
LL:=CHAR(200);
LI WCHAR(185) ;

RI :=C-R(204);
VL: =CHAR(186);
UL: =CHAR(201) ;
LYNE: =' '__ _ _ _ _ __ _ _ _ _ _ _•__ _ _ _ _

CLRS9R;
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GOTOXY(12,5); L.RITE(LL);
GOTOXY(62, 5); WRJITE(LR);
GOTOXY(13,5); L.RITE(LYTNE);
GOTDXY(13,7); LWRITE(LY1\E);
GO3TOXY(13, 16);IvRITE(LY\E);
GOTOXY(13, 20) ;LJITECLYT\E);
FOR X:= 6 TO 19 DO
BEGIN

GOTOXY(12,X); 1RITEM)A;
GTOXY(62,X); L.RITEM)A;

END;

GOTOXY(12,20); 61RITE(LL)
G3JTOXY(62,20); WRITE(L);
GOTOXY(12,l6); write(ri);

GO3TOXY(l2,1); write~ri);
GOTOXYC62,7); write~li);

TEXTCO.OR (YELULOW);
END;

PROCEDURE STSTATE;

(This procedure evaluates the data3 in a steady state directory
whiich was developed in the SST procedure. It uses the technique of
independent replications and calculates the confidence interval for the
data provided. A T-value of 1.96, corresponding to a 957. confidence
interval for large amounts of data, will be used.)

VAR

?1,TOTL,SQDIF:A;

SSC,S,IIJTOT,SUM,DIF :REAL;
PAUSE :HR
TVL :STRING3;
NUM1RLN, ADDRUN :INTEER;

BEGIN
CLRSCR;
BOXES;
TEXTCOLOR(YELLOW);
GOTOXY(25,6); W.RITE('STEADY STATE ANAYSIS');

Kh=1;(INITIALIZES COUN4TER FOR
DATA RETRIEVAL)

IIJTOT:=0; (INITIALIZE VARIABLES TO
ZERO)

M1YATM ;
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FOR I:1l TO NUMlWLE DO
TOTLEI):=0;

FOR I:=l TO NLWFILE DO (COMPFUTE MEANJS OF INIVIDUAL
FILES)

B3EGIN
FOR J: =1 TO '511 DO
BEG IN

TOTALE I1: =T0TA[ I +TEIMFPEM3;

IITO:=IJO;".E] Sl ~ FT- NIIL

END;

MU E 1T: =TOTAiL I I/L; (~PT IEC~ ~~

FOR K:=1 TO LWFI LE DO (CALCLLATE TH-E VAR~IAN'CE OF TI-E
DATA)

BEGIN
SQDIF[K:=SOR(t1JEK)-41J-AT);
SLM: -SLI+SQD I F EKJ;

END;

S:=S~lT(SSQ); (OBTAIN THE STANDARD
DEVIATION)

IF ILWFILE=l Ti-EN (SET TH-E APPROPRIlATE
T-VALLE)

T:-=12.71;
IF NLW ILE=2 TH-EN

T:=4.303;
IF I&WILE=3 TH-EN

T:=3.162;
IF NrPWILE=4 TI-EN

T:=2. 776;
IF I\LWILE-5 TH-EN

T=2. 571;
IF (NULWILE=6) OR (NLWILE=7) TI-EN

T: =2.4;
IF (ILILE8) OR (NLWILE=-9) TH-EN

T:=2. 3;
IF (I'LWILE>=10) ANID (NUMVILE@=13) TH-EN
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T: =2.2;

IF (NUMFILE>=14) AND (NUMFILE<=27) THEN
T:=2.1;

IF (NUMFILE>=28) AND (NUMFILE<=120) THEN
T:=2.0;

IF NUMFILE>120 THEN
T: = 1.96;

STR (T, TVAL);
GOTOXY(17,10); WRITE('95% CONFIDENCE INT COMPUTED WITH T=',TVAL);

LOW: =(MUAT-((T*S)/SQRT(NUMFILE))); (COMPUTE THE 95. CONF
INT)

HIGH:=(MUHAT+ ((T*S)/SQRT(NUMFILE)));

GOTOXY(22,12); WRITE('EST. MEAN : ',MUHAT:6:2); (DISPLAY
SOLUTIONS)

GOTOXY(22,13); WRITE('VAIANCE : ',SSQ:6:2);

GOTOXY(21,15); WRITE(LOW:9:2,' <= MEAN <= ',HIGH:6:2);

(The variable ADDRUN represents the number of additional runs of
the simulation required to obtain a confidence interval which
is within +/- 5. of the mean. Reference Welch, in Chapter 6
of the Computer Performance Model ing Handbook, pages 321-322)

DIF: =(HIGH-LOW);
NUMRUN: =TRUNC ((DIF/(MUHAT/10) )*NLMENT) ;

ADDRUN=: NLflRL-JENT;
IF ADDRUN<O THEN

ADDRUN: =0;

GOTOXY(14,17);WRITE('ADDITIONAL RUNS REQ FOR +/- 5. INTERVAL =

,ADDRUN) ;

PAUSE: =READKEY;
END;

PROCEDURE BATCH;
(This procedure utilizes Fishman's algorithm for computing independence
between the batches. It starts with a batch size of one, and then
doubles it until either independence is obtained or the number of
batches
decreases to less than 8. Specifics on the algorithm can be found in
Fishman's article, "Grouping Observations in Digital Simulation",
Management Science,24,5,1978, pp 510-521. The intent of the algorithm
is to compute system mean and variance from one long run.)
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VAR

BREAK :LONGINT; (NLNMBER OF BATCHES)
D, I,J,M,N : INTEGER;

A,B,VARC,MTOT,K,Z :REAL;
TTOP,TBOTT,MEAN, T :REAL;
TOT, YAVG, CM, LOW, HIGH :REAL;
MU :ARA;

SJMSQR , MEANSR, SKSQ :REAL;
SK, HW : REAL;

BEGIN

IF NUJMFILE=l THEN (IF THE FILE IS APPROPRIATE PROCEED)
BEGIN

TOT:=O; (INITIALIZE VARIABLES)
Z: --O;
CLRSCR;
BOXES;
TEXTCOLOR (YELLOW);
GOTOXY(28,6);WRITE('BATCH MEANS');
FOR I:=1 TO NUM DO (SLM THE STEADY STATE DATA)

TOT: =TOT+TEM1P[ I];

YAVG:=TOT/NLM; (COMPUTE THE AVERAGE OBS
VALUE)

MTOT: =0;

K: =NUM;
N:=I;

WHILE K >= 8 DO (WHILE NO. OF BATCHES
REMAINS >8)

BEGIN (PERFORM THE BATCH MEANS
TEST)

TTOP: =0;
TBOTT: =0;
J:=l;

Z:=1.96;
BREPK:=TRUNC(NUM/N); (COMPUTE NLMBER OF BATCHES)

FOR I:=1 TO BRFAK DO (FOR EACH BATCH)
BEGIN

TOT: =O;
FOR M:=I TO N DO (SUM THE NUMBER OF

ENT IT IES/BATCH}
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BEG IN
TOYT:=TOT+TEI'PEJ];
J:=J+1;

END;
tlJEIJ:=TDT/N; (COMPUTE EACH BATCH'S MEN)

END;

FOR I:1l TO (BREAK-1) DO (COMP'frJE TH-E TEST
STATISTICS)

BEG IN
A:=((MIJI-i.I+1))*(MU[JI)-M1.EI+1)));
TTOP:=TTOP+A;
B:=(1EIJ-YAVGA)*(r1JEI]-YAVG);
TBO0TT: =TBOTT4-B;

END;
TBOTT:=TBOUT+(( Cr1JEA(-YAVG)*(MCr1JEA(-YAVG));
CMi:= 1-(TTOP/ (2*TBOTT));

VARC: ABS( (BIRiA(-2) /(C CEAK*BREAK)-l)); (COMP~UTE VAIANVCE)

IF CM > (Z*SGRT(VARC)) TI-EN (SEE IF STATISTIC CM PASSES
TEST)

BEG IN
N:=2*N;(IF NOT, INCREMENT N AND K AN4D

RETRY)
K:=K/2;

END;

SLJISLR:O;
MTOT: =0;

IF CM < CZ*SCT(VVRC)) Ti-EN (IF CM DOES PASS TH-E TEST)
BEG IN

D:=N;(INDEPENDENCE HA~S BEEN
OBTA~INED)

FOR I:1l TO BREAK DO
BEGIN

MTOT: =MTOT+MUJEI]; (CALLLATE TH-E GRAN'D M~EAN)
SUMISOR: di~lS~l+SQ(MUJEI );

EN);
(FIND APPROPRIlATE T-VALLE)

IF I'LWILE=l TI-EN
T:=12.71;

IF NUMWILE=2 TH-EN
T:=4. 303;

IF LW FILE=3 TH-EN
T:=3.182;

IF N10W~ IE=4 TI-EN
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T: =2.776;
IF NUMFILE=5 THEN

T:=2.571;
IF (NUMFILE=6) OR (NLtTILE=7) THEN

T:=2.4;
IF (NUMFILE=8) OR (NUMFILE=9) Ti-EN

T:=2.3;
IF (NUMFILE>=10) OR (NLU'FILE<=13) THEN

T: =2.2;
IF (NUMFILE>=14) OR (NUMFILE<=27) THEN

T:=2. 1;
IF (NUMFILE>=28) OR (NUMFILE<=120) THEN

T:=2.0;
IF NUMFILE>120 THEN

T:=1.96;

MEAN:=MTOTIBREAK; (COMPUTE MEAN AND) VARIANCE)
MEANQ:--SGR(MEAN) ;
SKSQ: =((SLYSO-(BREAK*MEANO) )/(BREAK-1I) );

SK: =SQRT(SKSQ);
HW:=T*(SK/(SRT(BREAK))); (COMPLTE CONF INT HALFWIDTH)

GOTOXY(23,9);;WRITE(' INDEP WITH ',BREAK,' BATCHES');
GOTOXY(23, 11);WRITE('EST. MEAN: ' ,MEN-6:2);

GOTOXY(23, 12);WRITE('VARIANCE: ',SKSQ:6:2);

LOW: wEAN-H; (COMPUTE C0NFIDENCE INT)
HIGH: =MEAN+HW;
GOTOXY(21,15);WRITE(LOW:9:2, ' <= MEAN <= ' ,HIGH:6:2);

END;
END;

(GIVEN THAT INDEPENDENCE IS NOT OBTAINED BEFORE THE NUMBER OF
ENTITIES

PER BATCH FALLS BELOW 6, THEN THE FOLLOWING MESSAGE IS DISPLAYED)

IF D=O THEN
BEGIN

GOTOXY(17,12);WRITELN('TEST FOR INDEPENDENCE FAILED, NEED MORE
DATA');

END;
READLN;

END;

PROCEDURE SST;

(This procedure is called after the user has seen a graphical

101



representation of the data, with confidence intervals, and has
an idea where the transient period terminates. The program

queries the user for this point, and then modifies the current

.dct directory to build a .sst directory of steady state data.

After the directory is built the STSTATE and Batch procedures

are called to obtain the data's confidence interval.}

VAR

SSTNAME : WRI ;
SST :FYLE;
I,J,M,NGO :INTEGER;
PAUSE :CA;

BEGIN

CLRSCR;
TEXTCOLOR(WHITE);
BOXES;
TEXTCOLOR (YELLOW);
GOTOXY(21,6);WRITE('CREATE STEADY STATE DIRECTORY');

IF TEMP[1=O THEN (CHEK< TO MAKE SURE A DIRECTORY IS

LOADED)
BEGIN

GOTOXY(17,1O);WRITE('NO DIRECTORY IN USE');

GOTOXY(I7,12);WRITE('PLEASE PRESS <RETURN> FOR MIN MENU');

PAUSE: =READKEY;

END;

IF TEMP[1]<>O THEN (GIVEN THAT A DATA FILE IS LOADED)

BEGIN

(At this point the program will echo the cutoff value loaded in the

GRA°HIT procedure. The user will then be queried for the name of

the Steady State file which will be generated by truncating the first
"cutoff" number of values from each sequential file. The program

will

take the user's input name and add the extension ".SST" }

GOTOXY(17,9);WRITE('CUTOFF VALUE IS ',CUTOFF);

GOTOXY(17,10);WRITE('NAME OF STEADY STATE DIRECTORY: ');
GOTOXY( 16, 11) ;READLN(SSThhME);

SSTNPME:--SSTNME+'.SST'; (ADD THE .SST EXTENSION TO

FILENAME)

ASSIGN (SST,SSTNAME);

REWRITE(SST); (OPEN THE FILE FOR DATA)
NUM: =NUENT-CUTOFF; (DEF I NE THE LJIBER OF VALUES PER

FILE)

WRITELN(SST, NUMFILE); (MAKE THE NUMBER OF FILES THE FIRST

ENTRY)
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WRITELN(SST,NUM); {MAKE THE NUMBER OF VALES PER FILE,
SECOND)

M:=I; N:=1;
FOR I:=1 TO NUMFILE DO (READ IN THE VALLES FROM THE ORIGINAL

DATA)
BEGIN (SET, TRUNCATING THE FIRST "CUTOFF"

VALUES)
FOR J:=l TO NLMENT DO
BEGIN

IF J<CUTOFF THEN
M: =M+I;

IF J>=CUTOFF THEN
BEGIN

WRITELN(SST,TEMP[M]);
TEMPPEN :=TEMPEM];
N: =N+l;
M: 4M+1;

END;
END;

END;
CLOSE(SST); (CLOSE THE NEW .SST FILE)
CLRSCR;
BOXES;

(Now that the steady state data file is built, determine if the
user wants to evaluate the new file via Batch Means (one long run)
or Independent Replications (Multiple runs))

GOTOXY(21,6) ;WRITE('CREATE STEADY STATE DIRECTORY');
GOTOXY(17, l0);WRITE('DIRECTORY ',SSTNAME,' HAS BEEN CREATED');
GOTOXY(17,12);WRITE(' 1) INDEPENDENT REPLICATIONS');
GOTOXY(17,13);WRITE(' 2) BATCH MEANS EVALUATION');
GOTOXY(17,14) ;WRITE(' 3) DATA MENU');
GOTOXY(17,19);WRITE('PLEASE ENTER NUMBER OF CHOICE : 1);
READLN(GO);

IF (GO=l) AND (NUMFILE=I) THEN
BEGIN

TEXTCOLOR (GREEN);
GOTOXY(17,16);WRITE('MUST USE BATCH MEANS FOR SINGLE DATA FILE');
GOTOXY(17,17);WRITE('PRESS <RETURN> FOR BATCH MEANS PROCESS.');
TEXTCOLOR (YELLOW);
READLN;
GO: =2;

END;

IF (GO=2) AND (NUMFILE>l) THEN
BEGIN
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TEXTCOLOR (GREEN);
GOTOXY(17,16);WRITE('IMIST USE IND REPLICATIONS FOR MULTIPLE

FILES');
GOTOXY(17,17);WRITE('PRESS <RETURN> FOR IND REP PROCESS.');
TEXTCOLOR (YELLOW);
READLN;
GO: =1;

END;

CASE GO OF
1 : STSTATE;
2 : BATCH;

END;
END;

END;

PROCEDLRE GRAPHIT;

(This procedure graphs the data in the current .dct directory for the
user to review. It then calls to the SST procedure to build a

directory
for the steady state data.)

type sett = array [1..101,1..2] of real;
var

PRYNT,pause : CHAR;
GraphDriver : integer; { The Graphics device driver )
GraphMode : integer; ( The Graphics mode value )
ErrorCode : integer; ( Reports any graphics errors }
MaxColor : word; ( The maximunm color value available )
OldExitProc : Pointer; ( Saves exit procedure address )
step : INTEGER;
values : sett;
x,Y, MAXADD,VALYY : integer;
max,scale : real;
WRITING : WRI ;

YAXIS,I,START,STOP : INTEGER;
VALUE, YYY : STRING[5];
CHOICE,SER,N H : INTEGER;

BEGIN

STEP: = 1;
IF NUMENT<600 THEN

STEP: R OUD(600/NUMENT);
MAX :=0;
FOR X:= 1 TO NLU'ENT DO

IF (MAVG[X]>MAX) OR (MAVGEX]*-I>MAX) THEN BEGIN
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MAX:= IMAGXJ;
IAXADD: =X;

END;
IF MAX<O TH-EN MX:AmAX*-l;
IF AX=0 TI-EN EXIT;
graphdr iver: =2;
graphmade: -4;
InitGraph(graphdriver,graphnode,''); (activate graphics
ErrorCode := GraphResult; (error?
if ErrorCode Q> grOk then
begin

W.riteln('Graphics error: 1, GraphErrorMsg(ErrorCode));
Halt Cl);

end;

0- I CE:=1;
SER:=1;

START:=l;

WH4-ILE CHOCICE <> 3 DO
BEG IN

CLEARDEVI GE;
IF SER=O TI-EN (ERROR MESSG IF USER TRIES TO BACK UP)
BEGIN (WH-EN STARTINGI PT IS ON SCREEN)

SER:=l;
START:=1;
OJTTEXTXY(17,165,'STARTING POINT IS ALREADY ON SCREEN');

IF SER>NUMlRP3H TI-EN (ERROR MVESSAGE IF USER TRIES TO GO FORWARD)
BEGIN (WH-EN ENDING3 PT IS ON SCREEN)

SER:=NUMGRH;
START:=START-600;
OUTTEXTXY(17,165,'END OF OUTPUT DATA IS ON SCREEN');

END;

LIINE(25, 140,625, 140); (DRAW AXES AND TICK MARS)
LIINE(25,40, 25, 140);

LIINE(85, 140,85,143);
LINE( 145,140,145, 143);
LINE(205, 140,205, 143);
LIIEC265, 140,265,143);
LIIEC325, 140,325,143);
LINEC35, 140,365,143);
LINE(445, 140,445,143);
LINE (505, 140,505, 143);
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LII'E(565, 140,565,143);
LINE (625, 140,625, 143);

FOR~ I:=1 TO 10 DO (NUMIBER TH-E Y-AXIS)1
BEG IN

STR(YY,YYY);
WLTTEXTXY(5, (40-U(I-1)*10)),YYY);

END;

FOR I:=1 TO 10 DO (NUM!BER THE X-AXIS)
BEG IN

STR(VAZL,VgLLE);
WTTEXTXY( (23+( 1*60)), 147, VALLE);

END;

MOVETO(25, 140); (DRAWJ THE 600 DATA PTS STARTING WITH
(START-1))

STOP:=(6-00(START 1));
IF STCP>NJMENT TH-EN

STOP: NUENT,
FOP Y:= START TO STOP DO

LIrETO(25+((Y-(STAT-1))*STE'),130-round((rAYGEYJ/max)*100));
OUJTTEXTXY(17,155,'1)LAST SCREEN 2)f\EXT SCREEN 3)ID TRAN4SIENT');

(30TOXY(50,21);READLN(O-IOICE); (ALLOWS USER TO MME THI~JFWl-1 ThE
DATA)

IF C)-CICE=1 TI-EN (RESET STAR~TINGI PT ACCORDINGLY)
BEGIN

SER: -SER- 1;
START: =STRT--600;

END;
IF C)-UICE=2 TI-EN
BEGIN

SER: -SER4-1;
START: -STAT+600;

END;
END;

(Wh~en the user determines a "cutoff " value for the transient, based on
the graph he/she types "3" and is queried for the cutoff value.)

OUTTEXTXY(7,175,'IWHERE DO YOUJ THINK TRANSIENT ENDS> :1);
(3)TOXV (90,23);
FEADLN(CUTFF);
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(If the user would like, the graph car be dumped to the printer)

OUTTEXTXY(17,185,'WOLLD YOU LIKE A PRINTOUT"> (Y/N): ');PRYNT: =READKEY;

IF UPCASE(PRYNT)='Y' THEN
PRTSC;

TEXTMODE(C80);
SSI;

END;

PROCEDURE AVERAGE;

(This procedure can be accessed from the MAIN MENU or from the
REFC LL procedure. It averages the values across replications and
then performs a Moving Average algorithm with the moving window
size determined by the user. This data is then forwarded to the
G°PHIT procedure to be displayed and evaluated.)

VAR
I, J,K : INTEGER;

TOT :ARA;

BEGIN
FOR I:=1 TO NUMENT DO (INITIALIZE LL ARRAY VALUES TO ZERO)
BEGIN

TOTE I:=0;

MAVGC I :=0;
END;
FOR I:=l TO NUMENT DO (FOR EACH ENTRY IN THE OUTPUT FILE)
BEGIN

K:=I;

FOR J:=l TO (NUMFILE) DO (FOR EACH OUTPUT FILE)
BEGIN

TOTEI]:=TOT[I]+TEMP[K]; (COMPUTE A TOTAL VALUE FOR THE ITH
VALLE)

K:=(J*NUMENT)+I; (INCREMENT THE ORIGINAL FILE
COUNTER}

END;
MAVG[I]:=TOT[I]/NUMFILE; (COMPUTE THE AVERAGE OF AL ITH

VALUES)
END;

GRAPHIT; (GRAPH THE AVERAGE VALUES)
END;

PROCEDURE MOVAVG;
(This procedure parallels the AVERAGE procedure, but is used when there
is only
one output file in the directory. The procedure uses the Moving
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Aver age
algorithm noted by Welch in the "Computer Performance Modelling

Handbook",
averaging across the specified "window" to smooth the data. The data
generated will be forwarded to the GRAPHIT procedure for display}

VAR
J,M,N :INTEGER;
TOT :ARA;
WINDOW :INTEGER; (HALF WIDTH OF MOVING WINDOW)
BEGIN

BOXES;
TEXTCOLOR (YELLOW);
GOTOXY(30,6); WRITE('MOVING AVERA ');
GOTOXY(17,10) ;WRITE(' NO. OF FILES IN DIRECTORY: ',NUMFILE);
GOTOXY(17,12);WRITE(' NO. OF ENTRIES PER FILE: ',NUMENT);

(QLERY THE USER FOR THE MOVING AVERA WINDOW SIZE)
GOTOXY(17,14);WRITE('HALFWIDTH OF MOVAVG WINDOW

>' ); READL(WINDW) ;

FOR N:=I TO NUMENf DO

TOTCNJ:=O; (INITIALIZE ALL TOTALS TO ZERO)

FOR N:=I TO NLMENT DO (RUN THE WINDOW ACROSS ALL ENTITIES)
BEGIN

IF N<(WINDOW+l) TIEN (FOR THOSE BEFORE THE WINDOW HALF WIDTH)
BEGIN

FOR M:=1 TO ((2*N)-l) DO
BEGIN

TOTEN] =TOT[NJ+TE]MP[M];
END;

MAVG[N]:=1/((2*N)-1) )*TOT[N];
END;

IF N>=(WINDOW+I) THEN
BEGIN

(After the entry is large enough to permit the full window
to be used in the average the first algorithm below is used.
This algorithm is used until the values do not allow for
a full window size, due to the end of the file. Then
the second algorithm below is used)

IF N< (NUMENT-WIINDOW) THEN (FIRST ALGORITHM)
BEGIN

FOR M:=(N-WINDOW) TO (N+WINDOW) DO
TOT[N]: =TOT[N]+TEMP[MJ;
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$AVG[N]: =(/( (2*WIINDOW)+1))*T0T[N;
END;

IF N>=(NUMENT-WINDOW) THEN (SECOND ALGORITHM)
BEGIN

J:=(NUMENT-N);
FOR M:=(N-J) TO NUMENT DO

TOT[N]:=TOT[N]+TEMP[M];
MAVG[N]: =TOT[N]/((2*J)+l);

END;
END;

END;
GRPPHIT; (GRAPH THE MOVING AVERAGES)

END;

PROCEDURE NEWDATA;

(This procedure is called from the DATA MENU to develop a
new directory for use by the program. It builds the directory
based on user inputs for the number of files to be input (NUMFILE)
and their common length of entries (NLENT). Inputs are prompted
by the program. Upon completion the user selects to evaluate the
transient for either single or multiple output files, as appropriate.)

VAR I,J,M :INTEGER;
FILNAME,D :WRI;
FIL,DCT :FYLE;
GO :CHA;

TEST, TESST :INTEGER;

BEGIN
BOXES;
TEX TCOLOR (YELLOW);

GOTOXY(30,6); WRITE('BUILD NEW DIRECTORY ');
GOTOXY(17, 10);WRITE(' NAME OF NEW DIECTORY:' );RADLN(DCTNAE);

DCTNAE: =DCTNE+' . DCT'; (TAKE THE USERS I NPUT AND ADD . DCT)

(At this point the user is queried for the number of simulation
run outputs within the file and their length)

GOTOXY(17,12);WRITE(' NO. OF FILES IN DIRECTORY:
' ) ;READLN (NUMFILE) ;

GOTOXY(17,14);WRITE(' NO. OF ENTRIES PER FILE: ');READLN(NUMENT);

ASSIGN(DCT,DCTNAME); (ASSIGN A STRING DESIGNATOR ThE
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ARAY)

REWRITE(DCT); (OPEN THE NEW DIRECTORY FOR USE)

WRITELN(DCT,NUMFILE); (FIRST ENTRY IS THE NUMBER OF OUTPUT
FILES)

WRITELN(DCT,NLMENT); (SECOND ENTRY IS THE NO. OF ENTITIES PER
RUN)

M:=I;

TEST: =1;
TESST: =4;
WHILE TEST=I DO
BEGIN

CLRSCR;
BOXES;
TEST: =2;

GOTOXY(30,6) ;WRITE(' FILE ENTRY');

Now the simulation output file to be read from is specified)

GOTOXY(17,10);WRITE('NAE OF FILE : ');READLN(FILNAME);

ASSIGN(FIL,FILNAME); (ASSIGN THE STRING "FIL" TO THE ORIGINAL
FILE)

IF (EXIST(FILNAME)=FALSE) THEN
BEGIN

GOTOXY(17,12);WRITELN('FILE DOES NOT EXIST');
GOTOXY(17,14);WRITE('1) TRY AGAIN');
GOTOXY(17,15);WRITE('2) DATA MENU');
GOTOXY(17,19);WRITE('PLEASE SELECT NUMBER OF CHOICE: ');
GOTOXY(49, 19);
GO:=READKEY;
CASE GO OF

'1' : TEST:=1;
'2' : TESST:=3;

END;

END;

IF TESST <> 3 THEN (GIVEN THAT THE FILE EXISTS)
BEGIN

RESET(FIL); (OPEN FIL TO BE
READ)

FOR I:= 1 TO NUMFILE DO
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BEGIN (FOR THE NUMBER
SPECIFIED)

FOR J:=l TO NUMENI DO

BEGIN
READLN(FIL,TEMPEM]); (READ THE DATA VALLE FROM

"FIL" }

WRITELN(DCT,TEMP[M]); (WRITE IT INTO "DCT")
M: =M+1;

END;
END;

CLOSE(FIL); (CLOSE THE FILES TO FURTHER
OPERATION)

CLOSE(DCT);
BOXES;

(The user is then asked to make a choice from the menu below. If
the data has been loaded correctly, he/she can proceed to the
transient identification section. Decision between the first two
options is based on whether there are multiple simulation output
files or only one. If the data was not loaded correctly, then the
user can return to the data menu at this pt.)

GOTOXY(17,12); WRITE('DIRECTORY ',DCTNAME,' IS NOW BUILT.');
GOTOXY(17,13); WRITE('1) IDENTIFY TRANSIENT, MULTIPLE FILES');
GOTOXY(17,14); WRITE('2) IDENTIFY TRANSIENT, SINGLE FILE');
GOTOXY(17,15); WRITE('3) DATA MENU');
GOTOXY(17,19); WRITE('PLEASE ENTER APPROPRIATE CHOICE: ');

GO: =READKEY;
CASE GO OF

'1' : AVERAGE; (GIVEN MULTIPLE OUTPUTS THIS OPTION IS
CHOSEN)

'2' : MOVAVG; (APPROPRIATE FOR SINGLE OUTPUT FILE)
END;

END;
END;

PROCEDURE RECALL;

(This procedure is used when the data to be used has been loaded
previously.

It can be accessed either directly from the main Data Menu or through
the
View Procedure listed below. In either case this procedure queries the
user for the .DCT directory to be loaded, and upon valid input recovers
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the directory. It then prints the number of files and their length on
the
screen for the user's information, along with providing three options.
These options are identical to those offered in procedure Newdata

above.
They are to Return to the Data Menu or identify the transient for

multiple

or single files.)

VA I,J,M,N,TEST,TESST :INTEGER;
FILNAME :WRI;

FIL,DCT :FYLE;
GO :CHAR;

BEGIN
TEXTCOLOR (YELLOW);
NUMFILE:=0; {INITIALIZE STATISTICS)
NLMENT: =0;

TEST: =i ;
TESST: =4;
WHILE TEST=I DO
BEGIN

CLRSCR;

BOXES;
TEST: =2;
GOTOXY(30,6); WRITE('RECALL DIRECTORY ');

GOTOXY(17,1O);WRITE(' DIRECTORY TO RECALL:');READLN(DCTNAME);
DCTNAME:=DCTNAME+,.DCT'; (ADD .DCT EXTENSION TO FILE TO RECALL)

IF (EXIST(DCTNAME)=FALSE) THEN
BEGIN

GOTOXY(17,12);WRITELN('FILE DOES NOT EXIST');
GOTOXY(17,14);WRITE('1) TRY AGAIN');
GOTOXY(17,15);WRITE('2) DATA MENU');
GOTOXY(17,19);WRITE('PLEASE SELECT NUMBER OF CHOICE: ');

GOTOXY(49, 19);
GO: =READKEY;

CASE GO OF
'1' : TEST:=1;

'2' : TESST:=3;
END;

END;

END;

IF TESST <> 3 THEN
BEGIN
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ASSIGN(DCT,DCTNAME); (ASSIGN STRING FOR FILE OPERATION\
ISET(DCT); (OPEN THE DIRECTORY TO BE READ)

READLN(DCT,NUMFILE); {READ THE NUMBER OF FILES AND LENGTH)

READLN (DCT, NUMENT);
M:=I;

FOR I:=1 TO NUMFILE DO

BEGIN
FOR J:=l TO NUMENT DO

BEGIN
RDA]LN(DCT,TEMP[M]); (READ EACH VALUE INTO THE ARRAY

TEMPI ]

M:=M+l;
END;

END;

(Now that all the data is loaded in, the program provides the

user with the number of files and their length to verify that

it is the file he/she wanted. If it is then the transient car

be identified. If it is not, then the user can return to the
Data Menu and try again.)

GOTOXY(17,1O);WRITE(' NO. OF FILES IN DIRECTORY: ',NUMFILE);
GOTOXY(17,11);WRITE(' NO. OF ENTRIES PER FILE: ',NUMENT);

GOTOXY(17, 13); WRITE('1) IDENTIFY TRANSIENT, MLLTIPLE FILES');
GOTOXY(17, 14); WRITE('2) IDENTIFY TRANSIENT, SINGLE FILE');
GOTOXY(17,15); WRITE('3) DATA MENU');
GOTOXY(17,19);WRITE('PLEASE SELECT NUMBER OF CHOICE: ');

GOTOXY(49, 19);

GO: =READKEY;
CASE GO OF

'I' : AVERAGE; (APPROPRIATE FOR MULTIPLE OUTPUT FILES)

'2' : MOVAVG; (APPROPRIATE FOR SINGLE OUTPUT FILE)
END;

END;
END;

PROCEDURE VIEW;
(This procedure is called when the user asks for a list of the
existing data directories. It scans the current cormputer directory

for all files with the .DCT extension and lists them on the screen.

The user then has the option of returning to the main Data Menu or
recalling one of the files listed through the Recall procedure.)

VAR

DIRINFO: SEARCHREC;

BEGIN
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CLRSCR;
TEXTCOLOR (YELLOW);
GOTOXY(30,6);WRITELN('LISTING OF DIRECTORIES');
WRITELN; WRITELN; WRITELN;

FINDFIRST('*.DCT',ARCHIVE,DIRINFO); (LOCATES FIRST .DCT FILE)

WHILE DOSERROR = 0 DO {LNTIL THERE AFIE NO MORE
FILES)

BEGIN
WRITELN(DIRINFO.NA1E); (WRITE THE FILENAME TO

SCREEN)
FINDNEXT(DIRINFO); (FIND NEXT .DCT FILE)

END;

GOTOXY(17,20);
WRITE('TYPE 1 TO LOAD A FILE, 2 FOR DATA MENU: ');
CMD: =READ<EY;
CASE CMD OF

'1': RECALL; (USED TO LOAD 0NE OF THE FILES LISTED)
END;

END;

PROCEDURE DATA;
(This procedure is the starting point of the program. When the program

is initialized, this screen is displayed. The user must then decide
whether he/she wants to build a new data directory, recall one whose
name is known, get a list of the directories which currently exist,
or exit from the program. Exiting from the program is always done
from the Data Menu. At the completion of the Batch Means and

Independent
Replications routines the user is automatically returned to the Data
Menu. There are also several opportunities within the process to

return
to this menu and start over.)

VAR GO :CHAR;

BEGIN

WHILE GO <> '0' DO
BEGIN

BOXES;
TEXTCOLOR (YELLOW);
GOTOXY(30,6); W1RITE('DATA OPERATIONS ');
GOTOXY(17,19); WRITE('Enter number of selection: ');
GOTOXY(17,10);WRITE(' 1) BUILD NEW DATA DIRECTORY');
GOTOXY(17,11);WRITE(' 2) RECALL EXISTING DIRECTORY');
GOTOXY(17,12);WRITE(' 3) LIST EXISTING DIRECTORIES');
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GOTOXY(17, 15);WRITE(' 0) EXIT' );

gotoxy(44, 19);
GO: =RADKEY;
CASE GO OF

'1': NEWDATA; (USED TO BUILD A NEW DIRECTORY)

'2': RECALL; (USED TO RECALL A DIRECTORY WHOSE NAME IS
KNOWN)

'3': VIEW; (USED TO GET A LIST OR EXISTING
DIRECTORIES)

END;
END;

END;

END.
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Appendix D: Auxiliary Turbo PascalT " Programs Used

PROGRAM LININT;

(THIS PROM WILL PROVIDE A LINEAR INTERPOLATION OF A DATA SET,
PROVIDING EQALLY SPACED VALUES AT INCRENTS OF 10 TIME UNITS)

TYPE
WRI = STRING[20];
FYLE = TEXT;

VAR

TIE,rNEW :FYLE; (Declare text files for data transfer)
I,J,K,L : INTEGER;

TIM, N\EW :WRI; (Declare names to be associated w/files)

0O\E, TWO, Y, MAX :REAL;

A1,A2,Bl,B2 :REAL; (Declare coordinates to be used)
LL :WRI;

BEGIN

FOR L:=I TO 50 DO (For the 50 SLAM II output files)
BEGIN

STR(L,LL); {Define the number L as a word)

ASSIGN(TIME,'MONE'+LL+.OUT' ); (Identify each output file in
order)

ASSIGN(fNEW,'EQLAL'+LL+'.DAT'); (Build the Lth new file)
RESET(TIME); (Reset the output file to be read)
REWRITE(NEW); (Initialize the new file to receive

data)

A2:=O.O; (Start the interpolation at the point
0,0)

Al:=O.O;
I:=10; (Initialize the observation step at 10)
K:=I; (Initialize counter variable to 1)

RAD(TIE,B1);RFADLN(TIME,B2); (Read the data from the output
file)

WHILE K<=1000 DO (For the first 1000 data values)
BEGIN

IF (I>A1) AND (I<Bl) THEN (If I is between the two
observat ions)

BEGIN
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Y:=(((B2-A2)/(B-A1))(I-AI))A2; (Compute the value for I
on

a line between A and B)

1:=I+10; (Increment I to I+10)
WRITELN(NEW,Y); (Write the interpolated value to new

file)
END;

IF I>B1 THEN (If I doesn't fall between A and B;
BEGIN

AI:=B1; (Reset the values of A to B)
A2: =B2;
READ(TIME,B1);READLN(TIME,B2); Read the data from output

file)
K:=K+l; (Increment to the next observation)

END;
END;

CLOSE(NEW);CLOSE(TIME); (After each file is done, close the files)
END;

END.
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PROGRAM CONF ILE;

(This program concatenates portions of sequential data files. Its
purpose is to form data files of 2000 values from the equally

spaced data files generated by LININT.PAS, for use by the

software package FORECAST MASTER)

TYPE
WRI = STRING[20];
FYLE TEXT;

VAR

TIME, NEW :FYLE; (Declare file names for input/output)
I,J : INTEGER; (Declare counter variables)
TIM,N\EW :WRI; (Declare identifiers for filenames)

ONE,TWO :REA;
FILENAME :WRI;
NEWNA1, JJ :WRI;

BEGIN
FOR J:=l TO 50 DO (For the 50 SLAM II output files)

BEGIN
STR(J,JJ); (Makes J a string (word) rather

than #)

FILENAME:=('FCM'+JJ+'.DAT'); (Match identifiers to the Jth file)
EWNAME:=('K50.DAT'); (Generate the name of output file)

ASS IGN (TIME, FILENAME) ;

WRITELN(FILENAE); (Writes filename to screen,as a
check)

ASS IGN (NEW, NEVS ) ;E

RESET(TIME); (Resets the output file to be read)

APEND(NEW); (Prepares the file to be appended)

FOR I:=1 TO 460 DO
BEGIN

READLN(TIME,TWO); (Simply read the first 460 values)
END;

FOR I:=1 TO 40 DO
BEGIN

FR(ALN(TIME,TWO); (Place the last 40 values from the 50 files)
WRITELN(NEW,TWO); (into the newfile, for a total of 2000 obs.)

END;
CLOE(NEW);CLOSE(TIME); (Close the files at end of each

iteration)
END;

END.
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Apendix E: Array of Time-in-System to Time-Between-bservations
| Tlmm-3.twaen-Ob..rvat lens

L 1 2 2 4 s £ 7 a 2 10 11 12 £2 14 12 14 17 IA 12 20 21 22 22 24 25
1 203 063 2 56 44 29 30 30 25 015 2 5 5 1 7 3 4 1 2 5
2 5 22 230 34 24 1 23 12 0 It 12 • 4 4 1 1 1 2 1 1 S 2 1 2 4
3 34 44 27 22 17 1 2 2 1 11 2 3 3 1 3 4 1 0 1 0 2 1 U
4 70 30 23 It 22 26 12 16 14 2 12 S 2 5 4 3 2 3 1 3 2 0 2 1 4
5 62 26 25 21 25 8 15 10 10 4 5 4 G & 4 1 1 1 0 1 1 0 1 1 5
6 70 37 21 14 U 12 13 16 8 7 9 3 1 3 2 1 7 1 0 0 2 1 0 1 3
7 44 21 15 1 15 15 £0 1£ 10 7 3 2 7 2 G 2 • 1 1 2 1 0 0 0 4
6 6 21 1 2013 It • 2 2 S 1 4 1 3 2 0 £ 3 0 I 0 0 1 4
9 37 22 16 20 7 15 I1 7 4 G 5 2 3 1 3 0 0 0 0 0 0 1 0 0 2
10 49 16 14 1713 1 7 7 3 9 4 3 3 1 1 1 0 1 1 1 0 2 1 0 1
i1t52 14 10 I1£1 £0 4 5 4 4 4 2 5 2 0 0 1 2 3 0 1 2 2 0 3
12 37 17 14 £2 1 7 14 2 2 0 2 3 4 1 0 0 0 2 1 0 2 0 0 0 3
1349 71010 713 4 7 G4 2 4 2 0 1 1 3 0 0 0 1 0 0 3
14 36 12 1610 15 7 S 1 5 4 4 & 4 1 1 4 31 2 0 0 1 0 0 0
1S4215 910 1 1 & 3 7 7 0 1 3 3 0 0 11 1 1 0 1 0 0 0
£416112 2 10 4 4 G 2 9 6 2 2 G 0 2 1 0 0 0 1 0 0 1 £ 2
1730 2 6 4 7 ? G 2 2 3 3 0 1 0 2 0 3 2 0 0 1 0 0 0 1
1822 9 410 3 G 2 4 4 3 3 2 1 1 0 0 2 0 1 0 0 0 0 1 1
1923 3 43 2 6 4 3 1 4 2 0 4 0 1 0 1 0 1 0 1 1 0 0 3
20 20 7 33 G 2 3 2 1 4 1 31 2 2 1 0 0 0 1 0 0 0 1 0
21163 23 4 1 3 4 1 2 2 0 0 0 1 0 0 0 1 0 0 0 0 1
2213 6 4 1 33 1 1 2 2 0 0 0 1 0 0 1 0 0 0 0 0 0 2
2315 4 312 1 3 4 0 2 1 0 0 3 3 0 0 1 0 0 0 0 0 0 1 0
24 910 7 2 3 2 5 1 1 0 0 2 2 0 2 0 £ 1 0 a 0 0 0 0 1
2513 2 7 5 2 1 3 1 0 0 1 1 2 1 0 2 0 1 0 0 0 0 0 0 2
26243 52221 21 2031 1 20100000000
2721 23 1 4 0 1 2 1 2 0 1 0 1 1 2 0 1 0 0 0 0 1 0 0
2614 4 4 1 2 4 1 0 1 2 1 0 1 0 1 1 3 0 0 0 1 0 0 0 0
29 2 4 2 4 2 4 1 2 0 1 2 0 2 0 0 1 1 0 0 0 0 0 0 0 1
3012 3 3 3 3 2 2 4 3 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0
31 0 1 4 3 1 2 1 2 0 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0
32 9 3 2 4 0 0 0 1 11 0 1 3 2 0 1 0 0 0 0 0 0 0 0 0
33 8 4 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3410 2 4 4 2 1 0 2 0 0 2 2 1 1 1 0 1 0 0 0 1 1 0 0 0
25 4 2 9 1 2 1 2 1 0 2 1 1 1 1 2 0 0 0 0 0 0 0 0 0 0
36 5 3 1 4 3 0 3 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
37 5 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 4 1 4 3 0 2 2 0 1 2 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0
22 2 1 2 1 1 0 0 0 0 0 A 0 0 0 1 0 0 0 0 0 0 0 0 0 0
40 5 2 1 0 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0
41 5 0 0 1 0 2 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
42 3 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
43 4 2 1 0 2 2 2 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0
44 3 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
45 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
46 1 1 0 2 1 0 2 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
47 5 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
48 2 1 0 0 0 0 0 1 1 0 1 0 2 1 0 0 0 0 0 0 0 0 0 0 0
49 2 0 0 0 1 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 a
50 29 12 0 2 12 3 2 2 2 3 1 2 0 0 1 0 1 1 0 1 0 0 0 0 2
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